王鹏

个人信息Personal Information

副教授 博士生导师

招生学科专业:
信息与通信工程 -- 【招收博士、硕士研究生】 -- 电子信息工程学院
电子信息 -- 【招收博士、硕士研究生】 -- 电子信息工程学院

性别:男

毕业院校:哈尔滨工程大学

学位:工学博士学位

所在单位:电子信息工程学院

办公地点:电子信息工程学院128办公室

电子邮箱:

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Utilizing Parallel Networks to Produce Sub-Pixel Shifted Images With Multiscale Spatio-Spectral Information for Soft-Then-Hard Sub-Pixel Mapping

点击次数:

所属单位:电子信息工程学院

发表刊物:IEEE ACCESS

关键字:Remote sensing image soft-then-hard sub-pixel mapping sub-pixel shifted images multiscale spatio-spectral information

摘要:The distribution information of the land-cover classes in remote sensing image can be explored by sub-pixel mapping (SPM) technique. The soft-then-hard sub-pixel mapping (STHSPM) has become an important type of SPM method. The sub-pixel shifted images (SSI) from the same area can be utilized to improve the mapping result. However, the type of information in the fine SSI is insufficient, and the SSI-based STHSPM results are affected. To solve this problem, utilizing parallel networks to produce sub-pixel shifted images with multiscale spatio-spectral information (SSI-MSSI) for STHSPM is proposed. In SSI-MSSI, the fine SSI with multi-scale information and spatio-spectral information are obtained, respectively, from parallel networks, namely the multiscale network and spatio-spectral network. The multiscale network is spectral unmixing followed by mixed spatio attraction model and the spatio-spectral network is projected onto convex sets super-resolution followed by spectral unmixing. There two different kinds of fine SSI are integrated by appropriate weight parameter to produce the fine fractional images. Class allocation method then allocates the class labels into to each sub-pixel by the predicted value from the integrated fine fractional images. Three remote sensing images are tested to show that the proposed SSI-MSSI produces more accurate mapping results than the existing SSI-based STHSPM in the literature. In the quantitative accuracy assessment, the SSI-MSSI shows the best performance with the percentage correctly classified of 99.09% and 74.07% in the experimental results.

ISSN号:2169-3536

是否译文:

发表时间:2018-01-01

合写作者:张弓,Leung, Henry

通讯作者:王鹏