English 
王珑

副研究员 硕士生导师

招生学科专业:
力学 -- 【招收硕士研究生】 -- 航空学院
机械 -- 【招收硕士研究生】 -- 航空学院

性别:男

毕业院校:南京航空航天大学

学历:南京航空航天大学

学位:工学博士学位

所在单位:航空学院

办公地点:明故宫校区流体力学楼C12-603室

联系方式:13952048390

电子邮箱:

手机版

访问量:

最后更新时间:..

当前位置: 中文主页 >> 科学研究 >> 论文成果
Uniform Decomposition and Positive-Gradient Differential Evolution for Multi-Objective Design of Wind Turbine Blade

点击次数:

所属单位:民航学院

发表刊物:ENERGIES

关键字:wind turbine design convergence performance optimization efficiency uniform decomposition positive-gradient differential evolution

摘要:Convergence performance and optimization efficiency are two critical issues in the application of commonly used evolution algorithms in multi-objective design of wind turbines. A gradient-based multi-objective evolution algorithm is proposed for wind turbine blade design, based on uniform decomposition and positive-gradient differential evolution. In the uniform decomposition, uniformly distributed reference vectors are established in the objective space to maintain population diversity so that the population aggregations, which are commonly observed for wind turbine blade design using gradient-free algorithms, are minimized. The positive-gradient differential evolution is introduced for population evolution to increase optimization efficiency by guiding the evolutionary process and significantly reducing searching ranges of each individual. Two-, three-and four-objective optimizations of 1.5 MW wind turbine blades reveal that the proposed algorithm can deliver uniformly distributed optimal solutions in an efficient way, and has advantages over gradient-free algorithms in terms of convergence performance and optimization efficiency. These advantages increase with the optimization dimension, and the proposed algorithm is more suitable for optimizations of small size populations, thus remarkably enhancing the design efficiency.

备注:卷: 11 期: 5

ISSN号:1996-1073

是否译文:

发表时间:2018-05-01

通讯作者:王同光

版权所有©2018- 南京航空航天大学·信息化处(信息化技术中心)