教授
招生学科专业:
计算机科学与技术 -- 【招收博士、硕士研究生】 -- 计算机科学与技术学院
软件工程 -- 【招收硕士研究生】 -- 计算机科学与技术学院
网络空间安全 -- 【招收博士、硕士研究生】 -- 计算机科学与技术学院
电子信息 -- 【招收博士、硕士研究生】 -- 计算机科学与技术学院
毕业院校:南京大学
学历:南京大学
学位:工学博士学位
所在单位:计算机科学与技术学院/人工智能学院/软件学院
办公地点:江宁校区 东区 计算机楼 218 办公室
http://parnec.nuaa.edu.cn/xtan
电子邮箱:
最后更新时间:..
点击次数:
所属单位:计算机科学与技术学院/人工智能学院/软件学院
发表刊物:ICMR - Proc. ACM Int. Conf. Multimed. Retr.
摘要:We present a novel Deep Supervised Hashing with code operation (DSOH) method for large-scale multi-label image retrieval. This approach is in contrast with existing methods in that we respect both the intention gap and the intrinsic multilevel similarity of multi-labels. Particularly, our method allows a user to simultaneously present multiple query images rather than a single one to better express her intention, and correspondingly a separate sub-network in our architecture is specifically designed to fuse the query intention represented by each single query. Furthermore, as in the training stage, each image is annotated with multiple labels to enrich its semantic representation, we propose a new margin-adaptive triplet loss to learn the fine-grained similarity structure of multi-labels, which is known to be hard to capture. The whole system is trained in an end-to-end manner, and our experimental results demonstrate that the proposed method is not only able to learn useful multilevel semantic similarity-preserving binary codes but also achieves state-of-the-art retrieval performance on three popular datasets. © 2018 ACM.
是否译文:否
发表时间:2018-06-05
合写作者:Song, Ge
通讯作者:Song, Ge,谭晓阳