教授
招生学科专业:
计算机科学与技术 -- 【招收博士、硕士研究生】 -- 计算机科学与技术学院
软件工程 -- 【招收硕士研究生】 -- 计算机科学与技术学院
网络空间安全 -- 【招收博士、硕士研究生】 -- 计算机科学与技术学院
电子信息 -- 【招收博士、硕士研究生】 -- 计算机科学与技术学院
毕业院校:南京大学
学历:南京大学
学位:工学博士学位
所在单位:计算机科学与技术学院/人工智能学院/软件学院
办公地点:江宁校区 东区 计算机楼 218 办公室
http://parnec.nuaa.edu.cn/xtan
电子邮箱:
最后更新时间:..
点击次数:
所属单位:计算机科学与技术学院/人工智能学院/软件学院
发表刊物:数据采集与处理
关键字:弱监督;多标号;注意力;深度学习;
摘要:深度学习依赖于大数据在很多的任务中取得巨大成功,但目前大部分方法都依赖于严格标注的数据,或者假定仅含一个物体大致位于图片近中心位置且背景较少。而现实场景中背景复杂,出现的物体多样,增加了分类的难度,而且标注的代价很大。本文关注于弱监督场景下的分类任务,提出了基于注意力机制(Attention)结合递归神经网络的深度模型,利用图片级的标注进行多标号学习,利用损失函数进行梯度下降训练自动调整关注区域,使模型每次关注图片的局域区域,并在数据集PASCAL VOC 2007/2012上验证算法的有效性,与其他方法相比具有更强的可解释性。
是否译文:否
发表时间:2018-09-15
合写作者:张文
通讯作者:谭晓阳