English 
谭晓阳

教授

招生学科专业:
计算机科学与技术 -- 【招收博士、硕士研究生】 -- 计算机科学与技术学院
软件工程 -- 【招收硕士研究生】 -- 计算机科学与技术学院
网络空间安全 -- 【招收博士、硕士研究生】 -- 计算机科学与技术学院
电子信息 -- 【招收博士、硕士研究生】 -- 计算机科学与技术学院

毕业院校:南京大学

学历:南京大学

学位:工学博士学位

所在单位:计算机科学与技术学院/人工智能学院/软件学院

办公地点:江宁校区 东区 计算机楼 218 办公室
http://parnec.nuaa.edu.cn/xtan

电子邮箱:

手机版

访问量:

最后更新时间:..

当前位置: 中文主页 >> 科学研究 >> 论文成果
Selective Weakly Supervised Human Detection under Arbitrary Poses

点击次数:

所属单位:计算机科学与技术学院/人工智能学院/软件学院

发表刊物:PATTERN RECOGNITION

关键字:Weakly supervised learning Human detection Selective Weakly Supervised Detection (SWSD) Multi-instance learning (MIL)

摘要:In this paper we study the problem of weakly supervised human detection under arbitrary poses within the framework of multi-]instance learning (MIL). Our contributions are threefold: (1) we first show that in the context of weakly supervised learning, some commonly used bagging tools in MIL such as the Noisy-]OR model or the ISR model tend to suffer from the problem of gradient magnitude reduction when the initial instance level detector is weak and/or when there exist large number of negative proposals, resulting in extremely inefficient use of training examples. We hence advocate the use of more robust and simple max-]pooling rule or average rule under such circumstances; (2) we propose a new Selective Weakly Supervised Detection (SWSD) algorithm, which is shown to outperform several previous state-of-the-art weakly supervised methods; (3) finally, we identify several crucial factors that may significantly influence the performance, such as the usefulness of a small amount of supervision information, the need of relatively higher RoP (Ratio of Positive Instances), and so on these factors are shown to benefit the MIL-]based weakly supervised detector but are less studied in the previous literature. We also annotate a new large-scale data set called LSP/MPII-MPHB (Multiple Poses Human Body), in which and another popular benchmark dataset we demonstrate the superiority of the proposed method compared to several previous state-of-the-art methods.

ISSN号:0031-3203

是否译文:

发表时间:2017-05-01

合写作者:Cai, Yawei,Tan, Xiaosong

通讯作者:谭晓阳

版权所有©2018- 南京航空航天大学·信息化处(信息化技术中心)