发表时间:2018-11-12 点击次数:
所属单位:计算机科学与技术学院/人工智能学院/软件学院
发表刊物:计算机工程与科学
关键字:过程挖掘;多粒子群协同;启发式挖掘;时序行为;高斯变异;
摘要:过程流数据具有实时性、连续性和时序性等特征,使得传统过程挖掘算法难以发现隐含信息和演化过程。针对流过程模型的动态演化和重构要求,提出了一种基于时序行为分析的自适应混合启发式协同优化算法。首先定义演化流过程模型,基于日志活动间的隐含依赖关系改进过程逻辑的启发式挖掘规则,然后定义基于时序行为的老化因子,并引入高斯变异的多种群协作的自适应策略,改进粒子群优化算法的全局和局部精确寻优能力,实现优化和重构过程模型。该算法在四个典型测试函数上进行了对比实验,结果表明该算法在流过程挖掘中具有更好的收敛性和稳定性。
是否译文:否
发表时间:2017-05-15
合写作者:黄黎,许小媛
通讯作者:谭文安
发表时间:2017-05-15