扫描手机二维码

欢迎您的访问
您是第 位访客

开通时间:..

最后更新时间:..

  • 冒泽慧 ( 教授 )

    的个人主页 http://faculty.nuaa.edu.cn/mzh/zh_CN/index.htm

  •   教授
  • 招生学科专业:
    控制科学与工程 -- 【招收博士、硕士研究生】 -- 自动化学院
    电子信息 -- 【招收博士、硕士研究生】 -- 自动化学院
论文成果 当前位置: 中文主页 >> 科学研究 >> 论文成果
EEMD Based Incipient Fault Diagnosis for Sensors Faults in High-Speed Train Traction Systems

点击次数:
所属单位:自动化学院
发表刊物:2017 CHINESE AUTOMATION CONGRESS (CAC)
关键字:traction motor Kernel SVM EEMD incipient fault diagnosis closed-loop system
摘要:In this paper, the incipient fault diagnosis problem is studied for traction motor sensor fault. The data used for the fault diagnosis is from sensors of the closed-loop traction motor system, in which the deviations between normal and bias faulty data are of 1%similar to 5% and between normal and gain faulty data are of 1%similar to 10%. Considering the non-stationary of the data, the Ensemble Empirical Mode Decomposition method is used to transform the original data to intrinsic mode functions (IMFs). Then, the fault feature vector is extracted from IMFs. To deal with the fault diagnosis problem, the kernel support vector machine is utilized to be trained by the feature vector, and achieve the classification of the feature vector. The simulation results show that incipient faults can be diagnosed completely by the Kernel SVM based on EEMD method.
是否译文:否
发表时间:2017-01-01
合写作者:Sun, Xiuwen,姜斌,Li, Min
通讯作者:冒泽慧

 

版权所有©2018- 南京航空航天大学·信息化处(信息化技术中心)