李静
  • 招生学科专业:
    计算机科学与技术 -- 【招收硕士研究生】 -- 计算机科学与技术学院
    软件工程 -- 【招收硕士研究生】 -- 计算机科学与技术学院
    网络空间安全 -- 【招收硕士研究生】 -- 计算机科学与技术学院
    电子信息 -- 【招收硕士研究生】 -- 计算机科学与技术学院
  • 学位:工学博士学位
  • 职称:副教授
  • 所在单位:计算机科学与技术学院/人工智能学院/软件学院
电子邮箱:
所在单位:计算机科学与技术学院/人工智能学院/软件学院

当前位置: 中文主页 >> 科学研究 >> 论文成果
标题:
Multiple Object Saliency Detection Based on Graph and Sparse Principal Component Analysis
点击次数:
所属单位:
计算机科学与技术学院/人工智能学院/软件学院
发表刊物:
Jisuanji Yanjiu yu Fazhan
摘要:
In order to detect multiple salient objects from the image with cluttered background, a new multi-object salient detection method based on fully connected graph and sparse principal component analysis is proposed. Firstly, a rapid coarse detection method with different scales is adopted to obtain the object prior with the location of candidate objects and the pixel level saliency map. Meanwhile, we construct a fully connected graph based on the superpixel segmentation to obtain the superpixel-level saliency map. The salient regions are extracted from the superpixel-level binarized salient object prior map and a sparse principal component analysis method is used to gain the main features vector from the pixel matrix composed of the pixels in the optimized salient regions and obtain the salient map of corresponding scale. Finally, the final salient map is fused with the multi-scale saliency maps. Our method takes the advantage of pixel and superpixel method, it can not only simplify the calculation but also improve the detection precision of the salient objects in the image. Quantitative experiments on two public datasets SED2 and HKU_IS demonstrate that out method can detect multiple salient objects from complex images and outperforms other state-of-the-art methods. © 2018, Science Press. All right reserved.
ISSN号:
1000-1239
是否译文:
发表时间:
2018-05-01
合写作者:
Liang, Dachuan,Liu, Sai,Li, Dongmin
通讯作者:
李静
发表时间:
2018-05-01
扫一扫用手机查看