个人信息
刘春生
性别:女
学位:工学博士学位

个人信息 Personal information

学历:博士研究生毕业 毕业院校:南京航空航天大学 所在单位:自动化学院 电子邮箱:

Data-Driven Adaptive Critic Approach for Nonlinear Optimal Control via Least Squares Support Vector Machine

点击次数: 所属单位:自动化学院 发表刊物:ASIAN JOURNAL OF CONTROL 关键字:data-driven adaptive critic LS-SVM optimal control nonlinear 摘要:This paper develops an online adaptive critic algorithm based on policy iteration for partially unknown nonlinear optimal control with infinite horizon cost function. In the proposed method, only a critic network is established, which eliminates the action network, to simplify its architecture. The online least squares support vector machine (LS-SVM) is utilized to approximate the gradient of the associated cost function in the critic network by updating the input-output data. Additionally, a data buffer memory is added to alleviate computational load. Finally, the feasibility of the online learning algorithm is demonstrated in simulation on two example systems. ISSN号:1561-8625 是否译文: 发表时间:2018-01-01 合写作者:Sun, Jingliang,Liu, Nian 通讯作者:刘春生