个人信息Personal Information
副教授 硕士生导师
招生学科专业:
信息与通信工程 -- 【招收硕士研究生】 -- 电子信息工程学院
电子信息 -- 【招收硕士研究生】 -- 电子信息工程学院
性别:女
毕业院校:南京航空航天大学
学历:南京航空航天大学
学位:工学博士学位
所在单位:电子信息工程学院
办公地点:电子信息工程学院办公楼328
联系方式:邮箱:yayako_zy@nuaa.edu.cn QQ:27829342
电子邮箱:
Sea Ice SAR segmentation using a novel markov random field model with S-KPFD fast classification
点击次数:
所属单位:电子信息工程学院
发表刊物:PECCS - Proc. Int. Jt. Conf. Pervasive Embed. Comput. Commun. Syst.
摘要:With the development of computer-assisted algorithms, to improve the accuracy of segment synthetic aperture radar (SAR) sea ice imagery, a novel MRF energy function segmentation approach is proposed and applied. Different initial label field and feature field of MRF energy function have important impacts on the final segmentation results. The initial label field of energy function is semi-supervised by sea ice S-KPFD recognition result. And the feature field is improved by K distribution model in GLCM feature. The optimal energy function of the MRF model is obtained by EM method. The weighting parameter of the feature field is taken as a function of the annealing temperature. The influence of energy field on the classification result will auto-adjust to the annealing temperature. Finally, the four classes result of sea ice is accurately and boundaries distinct. Experiments demonstrate that the proposed algorithm is able to successfully segment various SAR sea ice images and achieve improvement over existing published methods including the SA MRF, GMM, and K-means clustering. © 2017 by SCITEPRESS - Science and Technology Publications, Lda. All rights reserved.
是否译文:否
发表时间:2017-01-01
合写作者:Leung, Henry,Xing, Shiyu,Lu, Da
通讯作者:孔莹莹,Leung, Henry,Xing, Shiyu,孔莹莹