English 
黄志球

教授

招生学科专业:
计算机科学与技术 -- 【招收博士、硕士研究生】 -- 计算机科学与技术学院
软件工程 -- 【招收博士、硕士研究生】 -- 计算机科学与技术学院
网络空间安全 -- 【招收博士、硕士研究生】 -- 计算机科学与技术学院
电子信息 -- 【招收博士、硕士研究生】 -- 计算机科学与技术学院

毕业院校:南京航空航天大学

学历:南京航空航天大学

学位:工学博士学位

所在单位:计算机科学与技术学院/人工智能学院/软件学院

联系方式:025-84892400

电子邮箱:

手机版

访问量:

最后更新时间:..

当前位置: 主页 >> 科学研究 >> 论文成果
upsilon-Support vector machine based on discriminant sparse neighborhood preserving embedding

点击次数:

所属单位:计算机科学与技术学院/人工智能学院/软件学院

发表刊物:PATTERN ANALYSIS AND APPLICATIONS

关键字:Manifold learning Local manifold structure Objective function Margin error

摘要:In this paper, we mainly focus on two issues (1) SVM is very sensitive to noise. (2) The solution of SVM does not take into consideration of the intrinsic structure and the discriminant information of the data. To address these two problems, we first propose an integration model to integrate both the local manifold structure and the local discriminant information into a""(1) graph embedding. Then we add the integration model into the objection function of upsilon-support vector machine. Therefore, a discriminant sparse neighborhood preserving embedding upsilon-support vector machine (upsilon-DSNPESVM) method is proposed. The theoretical analysis demonstrates that upsilon-DSNPESVM is a reasonable maximum margin classifier and can obtain a very lower generalization error upper bound by minimizing the integration model and the upper bound of margin error. Moreover, in the nonlinear case, we construct the kernel sparse representation-based a""(1) graph for upsilon-DSNPESVM, which is more conducive to improve the classification accuracy than a""(1) graph constructed in the original space. Experimental results on real datasets show the effectiveness of the proposed upsilon-DSNPESVM method.

ISSN号:1433-7541

是否译文:

发表时间:2017-11-01

合写作者:Fang, Bingwu,李勇,王永亮

通讯作者:黄志球

版权所有©2018- 南京航空航天大学·信息化处(信息化技术中心)