Huang ZhiQiu
Professor
Alma Mater:南京航空航天大学
Education Level:南京航空航天大学
Degree:Doctoral Degree in Engineering
School/Department:College of Computer Science and Technology
Discipline:Cyberspace Security. Computer Science and Technology. Software Engineering
Contact Information:025-84892400
E-Mail:
Hits:
Affiliation of Author(s):计算机科学与技术学院/人工智能学院/软件学院
Journal:PATTERN ANALYSIS AND APPLICATIONS
Key Words:Manifold learning Local manifold structure Objective function Margin error
Abstract:In this paper, we mainly focus on two issues (1) SVM is very sensitive to noise. (2) The solution of SVM does not take into consideration of the intrinsic structure and the discriminant information of the data. To address these two problems, we first propose an integration model to integrate both the local manifold structure and the local discriminant information into a""(1) graph embedding. Then we add the integration model into the objection function of upsilon-support vector machine. Therefore, a discriminant sparse neighborhood preserving embedding upsilon-support vector machine (upsilon-DSNPESVM) method is proposed. The theoretical analysis demonstrates that upsilon-DSNPESVM is a reasonable maximum margin classifier and can obtain a very lower generalization error upper bound by minimizing the integration model and the upper bound of margin error. Moreover, in the nonlinear case, we construct the kernel sparse representation-based a""(1) graph for upsilon-DSNPESVM, which is more conducive to improve the classification accuracy than a""(1) graph constructed in the original space. Experimental results on real datasets show the effectiveness of the proposed upsilon-DSNPESVM method.
ISSN No.:1433-7541
Translation or Not:no
Date of Publication:2017-11-01
Co-author:Fang, Bingwu,ly,wyl
Correspondence Author:Huang ZhiQiu
黄志球,男,博士,教授,博士生导师,国家教育部计算机基础教学(理工类)指导委员会委员,国防科技工业质量专家委员会委员 ,中国计算机学会理事、“系统软件”专业委员会副主任、“软件工程”委员,中国电子学会软件定义推进委员会委员,IEEE计算机学会南京分会副主席,CCF南京主席,江苏省计算机学会常务理事,江苏省软件人才基金会理事,工信部重点实验室“高安全系统的软件开发与验证重点实验室”主任。
主要研究方向为工业软件、智能化软件工程、网络空间安全、大数据和云计算等。
近年来承担国家重点研发计划课题、863高技术项目、国家自然科学基金以及各类国防科技型号项目30余项。发表SCI、EI和核心期刊论文100余篇;已培养博士近20名,硕士100余名。获得教育部自然科学奖二等奖1项,省部级科技进步二等奖2项,省部级科技进步三等奖2项,省部级教学成果二等奖2项。