扫描手机二维码

欢迎您的访问
您是第 位访客

开通时间:..

最后更新时间:..

  • 黄圣君 ( 教授 )

    的个人主页 http://faculty.nuaa.edu.cn/huangsj/zh_CN/index.htm

  •   教授   博士生导师
  • 招生学科专业:
    计算机科学与技术 -- 【招收博士、硕士研究生】 -- 计算机科学与技术学院
    软件工程 -- 【招收硕士研究生】 -- 计算机科学与技术学院
    电子信息 -- 【招收博士、硕士研究生】 -- 计算机科学与技术学院
论文成果 当前位置: 中文主页 >> 科学研究 >> 论文成果
Partial multi-label learning

点击次数:
所属单位:计算机科学与技术学院/人工智能学院/软件学院
发表刊物:AAAI Conf. Artif. Intell., AAAI
摘要:It is expensive and difficult to precisely annotate objects with multiple labels. Instead, in many real tasks, annotators may roughly assign each object with a set of candidate labels. The candidate set contains at least one but unknown number of ground-truth labels, and is usually adulterated with some irrelevant labels. In this paper, we formalize such problems as a new learning framework called partial multi-label learning (PML). To solve the PML problem, a confidence value is maintained for each candidate label to estimate how likely it is a ground-truth label of the instance. On one hand, the relevance ordering of labels on each instance is optimized by minimizing a rank loss weighted by the confidences; on the other hand, the confidence values are optimized by further exploiting structure information in feature and label spaces. Experimental results on various datasets show that the proposed approach is effective for solving PML problems. Copyright © 2018, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
是否译文:否
发表时间:2018-01-01
合写作者:Xie, Ming-Kun
通讯作者:Xie, Ming-Kun,黄圣君

 

版权所有©2018- 南京航空航天大学·信息化处(信息化技术中心)