扫描手机二维码

欢迎您的访问
您是第 位访客

开通时间:..

最后更新时间:..

  • 黄圣君 ( 教授 )

    的个人主页 http://faculty.nuaa.edu.cn/huangsj/zh_CN/index.htm

  •   教授   博士生导师
  • 招生学科专业:
    计算机科学与技术 -- 【招收博士、硕士研究生】 -- 计算机科学与技术学院
    软件工程 -- 【招收硕士研究生】 -- 计算机科学与技术学院
    电子信息 -- 【招收博士、硕士研究生】 -- 计算机科学与技术学院
论文成果 当前位置: 中文主页 >> 科学研究 >> 论文成果
Cross modal similarity learning with active queries

点击次数:
所属单位:计算机科学与技术学院/人工智能学院/软件学院
发表刊物:PATTERN RECOGNITION
关键字:Active learning Cross modal similarity learning Metric learning
摘要:In real applications, data is usually collected from heterogeneous sources and represented with multiple modalities. To facilitate the analysis of such complex tasks, it is important to learn an effective similarity across different modalities. Existing similarity learning methods usually requires a large number of labeled training examples, leading to high labeling costs. In this paper, we propose a novel approach COSLAQ for active cross modal similarity learning, which actively queries the most important supervised information based on the disagreement among different intra-modal and inter-modal similarities. Furthermore, the closeness to decision boundary of similarity is utilized to avoid querying outliers and noises. Experiments on benchmark datasets demonstrate that the proposed method can reduce the labeling cost effectively. (C) 2017 Elsevier Ltd. All rights reserved.
ISSN号:0031-3203
是否译文:否
发表时间:2018-03-01
合写作者:Gao, Nengneng,Yan, Yifan,陈松灿
通讯作者:黄圣君

 

版权所有©2018- 南京航空航天大学·信息化处(信息化技术中心)