扫描手机二维码

欢迎您的访问
您是第 位访客

开通时间:..

最后更新时间:..

  • 黄圣君 ( 教授 )

    的个人主页 http://faculty.nuaa.edu.cn/huangsj/zh_CN/index.htm

  •   教授   博士生导师
  • 招生学科专业:
    计算机科学与技术 -- 【招收博士、硕士研究生】 -- 计算机科学与技术学院
    软件工程 -- 【招收硕士研究生】 -- 计算机科学与技术学院
    电子信息 -- 【招收博士、硕士研究生】 -- 计算机科学与技术学院
论文成果 当前位置: 中文主页 >> 科学研究 >> 论文成果
Cost-effective training of deep CNNs with active model adaptation

点击次数:
所属单位:计算机科学与技术学院/人工智能学院/软件学院
发表刊物:Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Min.
摘要:Deep convolutional neural networks have achieved great success in various applications. However, training an effective DNN model for a specific task is rather challenging because it requires a prior knowledge or experience to design the network architecture, repeated trial-and-error process to tune the parameters, and a large set of labeled data to train the model. In this paper, we propose to overcome these challenges by actively adapting a pre-trained model to a new task with less labeled examples. Specifically, the pre-trained model is iteratively fine tuned based on the most useful examples. The examples are actively selected based on a novel criterion, which jointly estimates the potential contribution of an instance on optimizing the feature representation as well as improving the classification model for the target task. On one hand, the pre-trained model brings plentiful information from its original task, avoiding redesign of the network architecture or training from scratch; and on the other hand, the labeling cost can be significantly reduced by active label querying. Experiments on multiple datasets and different pre-trained models demonstrate that the proposed approach can achieve cost-effective training of DNNs. © 2018 Association for Computing Machinery.
是否译文:否
发表时间:2018-07-19
合写作者:Zhao, Jia-Wei,Liu, Zhao-Yang
通讯作者:黄圣君

 

版权所有©2018- 南京航空航天大学·信息化处(信息化技术中心)