• 其他栏目

    黄金泉

    • 教授 博士生导师
    • 性别:男
    • 毕业院校:南京航空航天大学
    • 学历:博士研究生毕业
    • 学位:工学博士学位
    • 所在单位:能源与动力学院
    • 办公地点:明故宫校区10-508
    • 联系方式:13951796358 微信号:wxid_577glshhuj0q21(与手机绑定)
    • 电子邮箱:

    访问量:

    开通时间:..

    最后更新时间:..

    Sensor Fault Diagnosis for Aero Engine Based on Online Sequential Extreme Learning Machine with Memory Principle

    点击次数:

    所属单位:能源与动力学院

    发表刊物:ENERGIES

    关键字:extreme learning machine (ELM) memory principle online learning aero engine sensor fault diagnosis

    摘要:The on-board sensor fault detection and isolation (FDI) system is essential to guarantee the reliability and safety of an aero engine. In this paper, a novel online sequential extreme learning machine with memory principle (MOS-ELM) is proposed for detecting, isolating, and reconstructing the fault sensor signal of aero engines. In many practical online applications, the sequentially coming data chunk usually possesses a characteristic of timeliness, and the overdue training data may mislead the subsequent learning process. The proposed MOS-ELM can improve the training process by introducing the concept of memory principle into the online sequential extreme learning machine (OS-ELM) to tackle the timeliness of the data chunk. Simulations on some time series problems and some benchmark databases show that MOS-ELM performs better in generalization performance, stability, and prediction accuracy than OS-ELM. The experiment results of the MOS-ELM-based sensor fault diagnosis system also verify the excellent generalization performance of MOS-ELM and indicate the effectiveness and feasibility of the developed diagnosis system.

    ISSN号:1996-1073

    是否译文:

    发表时间:2017-01-01

    合写作者:Lu, Junjie,鲁峰

    通讯作者:黄金泉