的个人主页 http://faculty.nuaa.edu.cn/gy/zh_CN/index.htm
点击次数:
所属单位:机电学院
发表刊物:Proc Inst Mech Eng Part B J Eng Manuf
摘要:In the data-rich manufacturing environment, the production process of work-in-process is described and presented by trajectories with manufacturing significance. However, advanced approaches for work-in-process trajectory data analytics and prediction are comparatively inadequate. However, the location prediction of moving objects has drawn great attention in the manufacturing field. Yet most approaches for predicting future locations of objects are originally applied in geography domain. When applied to manufacturing shop floor, the prediction results lack manufacturing significance. This article focuses on predicting the next locations of work-in-process in the workshop. First, a data model is introduced to map the geographic trajectories into the logical space, in order to convert the manufacturing information into logical features. Based on the data model, a prediction method is proposed to predict the next locations using frequent trajectory patterns. A series of experiments are performed to examine the prediction method. The experiment results illustrate the impacts of the user-defined factors and prove that the proposed method is effective and efficient. © IMechE 2017.
ISSN号:0954-4054
是否译文:否
发表时间:2019-01-01
合写作者:Cai, Haoshu,Lu, Kun
通讯作者:郭宇