English 
党耀国

教授

招生学科专业:
交通运输 -- 【招收博士、硕士研究生】 -- 经济与管理学院
管理科学与工程 -- 【招收博士、硕士研究生】 -- 经济与管理学院
工商管理 -- 【招收非全日制硕士研究生】 -- MBA中心
工程管理 -- 【招收非全日制硕士研究生】 -- MBA中心
工业工程与管理 -- 【招收硕士研究生】 -- 经济与管理学院
物流工程与管理 -- 【招收硕士研究生】 -- 经济与管理学院

学历:南京航空航天大学

学位:212

所在单位:经济与管理学院

电子邮箱:

手机版

访问量:

最后更新时间:..

当前位置: 中文主页 >> 科学研究 >> 论文成果
Optimized grey prediction model of interval grey numbers based on residual corrections

点击次数:

所属单位:经济与管理学院

发表刊物:Kongzhi yu Juece Control Decis

摘要:For the prediction of interval grey numbers, the prediction model based on the kernel sequence of interval grey number is constructed, and the idea of information domain is expanded based on residual corrections in this paper. To be specific, the information domain is divided into two parts and processed by the improved function transformation to strengthen the fitting effects of the trends of the upper and lower bounds in interval grey numbers before establishing prediction models respectively. By combination of the forecasting models of the kernel sequence and the processed information domains, the prediction results for the interval grey numbers are optimized and the principle of "full usage of information"is reflected during the modeling process of the interval grey numbers. Through discussing the case of the per capita industrial wastewater discharge in the Yangtze River Delta, the results of this method is verified by compared with traditional grey prediction methods of interval grey numbers, which shows its effectiveness and practicability. The proposed method provides another feasible forecasting method for the interval grey number prediction. The clear principle and modeling mechanism of this method make it possible to be applied in every field where interval grey numbers exists. © 2018, Editorial Office of Control and Decision. All right reserved.

ISSN号:1001-0920

是否译文:

发表时间:2018-06-01

合写作者:叶璟

通讯作者:党耀国

版权所有©2018- 南京航空航天大学·信息化处(信息化技术中心)