戴群

个人信息Personal Information

教授 博士生导师

招生学科专业:
网络空间安全 -- 【招收硕士研究生】 -- 计算机科学与技术学院
计算机科学与技术 -- 【招收博士、硕士研究生】 -- 人工智能学院
软件工程 -- 【招收硕士研究生】 -- 人工智能学院
电子信息 -- 【招收博士、硕士研究生】 -- 人工智能学院

学历:南京航空航天大学

学位:工学博士学位

所在单位:计算机科学与技术学院/人工智能学院/软件学院

电子邮箱:

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

A hierarchical and parallel branch-and-bound ensemble selection algorithm

点击次数:

所属单位:计算机科学与技术学院/人工智能学院/软件学院

发表刊物:APPLIED INTELLIGENCE

关键字:Ensemble selection Multiple Classifier Systems (MCSs) Hierarchical and Parallel Branch-and-Bound Ensemble Selection (H&PB&BEnS) algorithm Branch-and-Bound (B&B) algorithm

摘要:This paper describes the development of an effective and efficient Hierarchical and Parallel Branch-and-Bound Ensemble Selection (H&PB&BEnS) algorithm. Using the proposed H&PB&BEnS, ensemble selection is accomplished in a divisional, parallel, and hierarchical way. H&PB&BEnS uses the superior performance of the Branch-and-Bound (B&B) algorithm in relation to small-scale combinational optimization problems, whilst also managing to avoid "the curse of dimensionality" that can result from the direct application of B&B to ensemble selection problems. The B&B algorithm is used to select each partitioned subensemble, which enhances the predictive accuracy of each pruned subsolution, and then the working mechanism of H&PB&BEnS improves the diversity of the ensemble selection results. H&PB&BEnS realizes layer-wise refinement of the selected ensemble solutions, which enables the classification performance of the selected ensembles to be improved in a layer-by-layer manner. Empirical investigations are conducted using five benchmark classification datasets, and the results verify the effectiveness and efficiency of the proposed H&PB&BEnS algorithm.

ISSN号:0924-669X

是否译文:

发表时间:2017-01-01

合写作者:姚长生

通讯作者:戴群