![]() |
个人信息Personal Information
教授 博士生导师
招生学科专业:
网络空间安全 -- 【招收硕士研究生】 -- 计算机科学与技术学院
计算机科学与技术 -- 【招收博士、硕士研究生】 -- 人工智能学院
软件工程 -- 【招收硕士研究生】 -- 人工智能学院
电子信息 -- 【招收博士、硕士研究生】 -- 人工智能学院
学历:南京航空航天大学
学位:工学博士学位
所在单位:计算机科学与技术学院/人工智能学院/软件学院
电子邮箱:
A hierarchical and parallel branch-and-bound ensemble selection algorithm
点击次数:
所属单位:计算机科学与技术学院/人工智能学院/软件学院
发表刊物:APPLIED INTELLIGENCE
关键字:Ensemble selection Multiple Classifier Systems (MCSs) Hierarchical and Parallel Branch-and-Bound Ensemble Selection (H&PB&BEnS) algorithm Branch-and-Bound (B&B) algorithm
摘要:This paper describes the development of an effective and efficient Hierarchical and Parallel Branch-and-Bound Ensemble Selection (H&PB&BEnS) algorithm. Using the proposed H&PB&BEnS, ensemble selection is accomplished in a divisional, parallel, and hierarchical way. H&PB&BEnS uses the superior performance of the Branch-and-Bound (B&B) algorithm in relation to small-scale combinational optimization problems, whilst also managing to avoid "the curse of dimensionality" that can result from the direct application of B&B to ensemble selection problems. The B&B algorithm is used to select each partitioned subensemble, which enhances the predictive accuracy of each pruned subsolution, and then the working mechanism of H&PB&BEnS improves the diversity of the ensemble selection results. H&PB&BEnS realizes layer-wise refinement of the selected ensemble solutions, which enables the classification performance of the selected ensembles to be improved in a layer-by-layer manner. Empirical investigations are conducted using five benchmark classification datasets, and the results verify the effectiveness and efficiency of the proposed H&PB&BEnS algorithm.
ISSN号:0924-669X
是否译文:否
发表时间:2017-01-01
合写作者:姚长生
通讯作者:戴群