扫描手机二维码

欢迎您的访问
您是第 位访客

开通时间:..

最后更新时间:..

  • 戴宁 ( 教授 )

    的个人主页 http://faculty.nuaa.edu.cn/dn/zh_CN/index.htm

  •   教授   博士生导师
  • 招生学科专业:
    机械工程 -- 【招收博士、硕士研究生】 -- 机电学院
    航空宇航科学与技术 -- 【招收博士、硕士研究生】 -- 机电学院
    机械 -- 【招收博士、硕士研究生】 -- 机电学院
论文成果 当前位置: 中文主页 >> 科学研究 >> 论文成果
Automatic classification and segmentation of teeth on 3D dental model using hierarchical deep learning networks

点击次数:
所属单位:机电学院
发表刊物:IEEE Access
摘要:To solve the problem of low efficiency, the complexity of the interactive operation, and the high degree of manual intervention in existing methods, we propose a novel approach based on the sparse voxel octree and 3D convolution neural networks (CNNs) for segmenting and classifying tooth types on the 3D dental models. First, the tooth classification method capitalized on the two-level hierarchical feature learning is proposed to solve the misclassification problem in highly similar tooth categories. Second, we exploit an improved three-level hierarchical segmentation method based on the deep convolution features to conduct segmentation of teeth-gingiva and inter-teeth, respectively, and the conditional random field model is used to refine the boundary of the gingival margin and the inter-teeth fusion region. The experimental results show that the classification accuracy in Level 1 network is 95.96%, the average classification accuracy in Level 2 network is 88.06%, and the accuracy of tooth segmentation is 89.81%. Compared with the existing state-of-the-art methods, the proposed method has higher accuracy and universality, and it has great application potential in the computer-assisted orthodontic treatment diagnosis. © 2013 IEEE.
是否译文:否
发表时间:2019-01-01
合写作者:Tian, Sukun,Zhang, Bei,张蓓,Yuan, Fulai,Yu, Qing,程筱胜
通讯作者:Tian, Sukun,戴宁

 

版权所有©2018- 南京航空航天大学·信息化处(信息化技术中心)