标题:
2D compressed learning: support matrix machine with bilinear random projections
点击次数:
所属单位:
计算机科学与技术学院/人工智能学院/软件学院
发表刊物:
MACHINE LEARNING
关键字:
2D compressed learning Bilinear random projection Dimension reduction Support matrix machine Kronecker compressed learning
摘要:
Support matrix machine (SMM) is an efficient matrix classification method that can leverage the structure information within the matrix to improve the classification performance. However, its computational and storage costs are still expensive for high-dimensional data. To address these problems, in this paper, we consider a 2D compressed learning paradigm to learn the SMM classifier in some compressed data domain. Specifically, we use the Kronecker compressed sensing (KCS) to obtain the compressive measurements and learn the SMM classifier. We show that the Kronecker product measurement matrices used by KCS satisfies the restricted isometry property (RIP), which is a property to ensure the learnability of the compressed data. We further give a lower bound on the number of measurements required for KCS. Though this lower bound shows that KCS requires more measurements than the regular CS to satisfy the same RIP condition, KCS itself still enjoys lower computational and storage complexities. Then, using the RIP condition, we verify that the learned SMM classifier in the compressed domain can perform almost as well as the best linear classifier in the original uncompressed domain. Finally, our experimental results also demonstrate the feasibility of 2D compressed learning.
ISSN号:
0885-6125
是否译文:
否
发表时间:
2019-12-01
合写作者:
Ma, Di
通讯作者:
陈松灿
发表时间:
2019-12-01