标题:
稀疏化的因子分解机
点击次数:
所属单位:
计算机科学与技术学院/人工智能学院/软件学院
发表刊物:
智能系统学报
关键字:
因子分解机;稀疏;稀疏组Lasso;特征选择;推荐系统;
摘要:
因子分解机(简称为FM)是最近被提出的一种特殊的二阶线性模型,不同于一般的二阶模型,FM对二阶项系数进行了分解,这种特殊的结构使得FM特别适用于高维且稀疏的数据。虽然FM在推荐系统领域已获得了应用,但FM本身并未显式考虑变量的稀疏性,特别当变量中包含结构稀疏信息时。因此,FM的二阶特征结构使其特征选择时应当满足这样一种性质,即涉及同一个特征的线性项和二阶项要么同时被选要么同时不被选,当该特征是噪音时,应当同时不被选,而当该特征是重要变量时,应当同时被选。考虑到这种结构特性,本文提出了一种基于稀疏组Lasso的因子分解机(SGL-FM),通过添加稀疏组Lasso的正则项,不仅实现了组间稀疏,还实现了组内稀疏。从另一个角度看,组内稀疏也相当于对因子分解的维度k进行了控制,使其能根据数据的不同而自适应地调整维度k。实验结果表明,本文提出的方法在保证了相当精度甚至更优精度的情况下,获得了比FM更稀疏的模型。
是否译文:
否
发表时间:
2017-11-09
合写作者:
郭少成
通讯作者:
陈松灿
发表时间:
2017-11-09