扫描手机二维码

欢迎您的访问
您是第 位访客

开通时间:..

最后更新时间:..

  • 陈果 ( 教授 )

    的个人主页 http://faculty.nuaa.edu.cn/cg1/zh_CN/index.htm

  •   教授   博士生导师
  • 招生学科专业:
    交通运输工程 -- 【招收博士、硕士研究生】 -- 民航学院
    电子信息 -- 【招收博士、硕士研究生】 -- 民航学院
    交通运输 -- 【招收博士、硕士研究生】 -- 民航学院
    交通运输工程 -- 【招收硕士研究生】 -- 通用航空与飞行学院
    交通运输 -- 【招收硕士研究生】 -- 通用航空与飞行学院
论文成果 当前位置: 中文主页 >> 科学研究 >> 论文成果
Sharing pattern feature selection using multiple improved genetic algorithms and its application in bearing fault diagnosis

点击次数:
所属单位:民航学院
发表刊物:J. Mech. Sci. Technol.
摘要:In order to select the effective features or feature subsets and realize an intelligent diagnosis of aero engine rolling bearing faults, this paper presents a sharing pattern feature selection method using multiple improved genetic algorithms. Based on the simple genetic algorithm, a multiple-population improved genetic algorithm was proposed, which improves the speed and effect of algorithm and overcomes the shortcomings of local optima that simple genetic algorithm is easy to fall into. Because all populations regularly share and exchange their selecting features, the proposed algorithms can quickly dig up the current effective feature patterns, and then analyze and deal with the strong correlation between the feature patterns. This will not only give clear directions for the descendant evolution, but also help to achieve high accuracy feature selection, for, the features are highly distinctive. This multiple-population improved genetic algorithm was applied to rolling bearing fault feature selection and comparisons with other methods are carried out, which demonstrates the validity of sharing pattern feature selection method proposed. © 2019, The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature.
ISSN号:1738-494X
是否译文:否
发表时间:2019-01-01
合写作者:Guan, Xiaoying
通讯作者:陈果

 

版权所有©2018- 南京航空航天大学·信息化处(信息化技术中心)