扫描手机二维码

欢迎您的访问
您是第 位访客

开通时间:..

最后更新时间:..

  • ( 教授 )

    的个人主页 http://faculty.nuaa.edu.cn/zzz123/zh_CN/index.htm

  •   教授
  • 招生学科专业:
    应用统计 -- 【招收硕士研究生】 -- 数学学院
    数学 -- 【招收博士、硕士研究生】 -- 数学学院
论文成果 当前位置: 中文主页 >> 科学研究 >> 论文成果
A New Robust High-Order Weighted Essentially Non-Oscillatory Scheme for Solving Well-Balanced Shallow Water Equations

点击次数:
所属单位:航空学院
发表刊物:ADVANCES IN APPLIED MATHEMATICS AND MECHANICS
关键字:Shallow water equation high-order WENO scheme well-balanced procedure exact C-property convergence property
摘要:A new simple and robust type of finite difference well-balanced weighted essentially non-oscillatory (WENO) schemes is designed for solving the one-and two-dimensional shallow water equations with or without source terms on structured meshes in this paper. Compared with the classical WENO schemes [5] in this field, the set of linear weights of these new WENO schemes could be chosen arbitrarily with one constraint that their summation equals one, maintain the optimal order of accuracy in smooth regions and keep essentially non-oscillatory property in non-smooth regions. For the shallow flow problems with smooth or discontinuous bed, we combine with the well-balanced procedure for balancing the flux gradients and the source terms and then these new WENO schemes with any set of linear weights will satisfy the exact C-property for still stationary solutions and maintain the other advantages of other high-order WENO schemes at the same time. Some benchmark numerical examples are performed to obtain high-order accuracy in smooth regions, keep exact C-property, sustain good convergence property for some steady-state problems and show sharp shock transitions by such new type of finite difference WENO schemes.
ISSN号:2070-0733
是否译文:否
发表时间:2019-08-01
合写作者:Wang, Zhenming,赵宁
通讯作者:朱

 

版权所有©2018- 南京航空航天大学·信息化处(信息化技术中心)