的个人主页 http://faculty.nuaa.edu.cn/zzz123/zh_CN/index.htm
点击次数:
所属单位:理学院
发表刊物:JOURNAL OF COMPUTATIONAL PHYSICS
关键字:Multi-resolution scheme Weighted essentially non-oscillatory scheme Triangular mesh Finite volume High-order accuracy Steady-state problem
摘要:In this paper, we continue our work in [46] and propose a new type of high-order finite volume multi-resolution weighted essentially non-oscillatory (WENO) schemes to solve hyperbolic conservation laws on triangular meshes. Although termed "multi-resolution WENO schemes", we only use the information defined on a hierarchy of nested central spatial stencils and do not introduce any equivalent multi-resolution representation. We construct new third-order, fourth-order, and fifth-order WENO schemes using three or four unequal-sized central spatial stencils, different from the classical WENO procedure using equal-sized biased/central spatial stencils for the spatial reconstruction. The new WENO schemes could obtain the optimal order of accuracy in smooth regions, and could degrade gradually to first-order of accuracy so as to suppress spurious oscillations near strong discontinuities. This is the first time that only a series of unequal-sized hierarchical central spatial stencils are used in designing arbitrary high-order finite volume WENO schemes on triangular meshes. The main advantages of these schemes are their compactness, robustness, and their ability to maintain good convergence property for steady-state computation. The linear weights of such WENO schemes can be any positive numbers on the condition that they sum to one. Extensive numerical results are provided to illustrate the good performance of these new finite volume WENO schemes. (C) 2019 Elsevier Inc. All rights reserved.
ISSN号:0021-9991
是否译文:否
发表时间:2019-09-01
合写作者:Shu, Chi-Wang
通讯作者:朱