• 其他栏目

    赵万忠

    • 教授 博士生导师
    • 招生学科专业:
      机械工程 -- 【招收博士、硕士研究生】 -- 能源与动力学院
      动力工程及工程热物理 -- 【招收博士、硕士研究生】 -- 能源与动力学院
      机械 -- 【招收博士、硕士研究生】 -- 能源与动力学院
      能源动力 -- 【招收博士、硕士研究生】 -- 能源与动力学院
    • 主要任职:基础科研与人文社科处处长
    • 其他任职:汽车节能环保国家工程研究中心副主任、江苏省车辆分布式驱动与智能线控技术工程研究中心主任
    • 性别:男
    • 所在单位:科学技术研究院
    • 办公地点:A10-622(科研)
                       综合楼616(办公)
    • 联系方式:13912995349 025-84896155
    • 电子邮箱:
    • 2024当选:长江学者

    访问量:

    开通时间:..

    最后更新时间:..

    Co-estimation of Lithium Battery SOC Based on BP-EKF Algorithm

    点击次数:

    所属单位:能源与动力学院

    发表刊物:Qiche Gongcheng

    摘要:Accurate estimation of battery SOC is not only a prerequisite for control and optimization of electric vehicle, but also the basis for the reasonable implementation of battery management. In this paper, based on the first-order RC equivalent circuit model, a SOC estimation method for lithium power battery is proposed by combining BP neural network with extended Kalman filtering (EKF), in which recursive least-squares with forgetting factor and BP-EKF algorithm are adopted to conduct a co-estimation of SOC and other model parameters. Corresponding filter output parameters are used to train BP neural network off-line, and succed trained BP neural network are used to compensate the estimation error in EKF algorithm. The results of simulation and dynamic state test show that compared with EKF algorithm, the SOC estimation method proposed has good performances in divergence suppression and robustness, and can effectively enhance the estimation accuracy of battery SOC. © 2017, Society of Automotive Engineers of China. All right reserved.

    ISSN号:1000-680X

    是否译文:

    发表时间:2017-06-25

    合写作者:孔祥创,王春燕

    通讯作者:孔祥创,赵万忠