• 其他栏目

    赵万忠

    • 教授 博士生导师
    • 招生学科专业:
      机械工程 -- 【招收博士、硕士研究生】 -- 能源与动力学院
      动力工程及工程热物理 -- 【招收博士、硕士研究生】 -- 能源与动力学院
      机械 -- 【招收博士、硕士研究生】 -- 能源与动力学院
      能源动力 -- 【招收博士、硕士研究生】 -- 能源与动力学院
    • 主要任职:基础科研与人文社科处处长
    • 其他任职:汽车节能环保国家工程研究中心副主任、江苏省车辆分布式驱动与智能线控技术工程研究中心主任
    • 性别:男
    • 所在单位:科学技术研究院
    • 办公地点:A10-622(科研)
                       综合楼616(办公)
    • 联系方式:13912995349 025-84896155
    • 电子邮箱:
    • 2024当选:长江学者

    访问量:

    开通时间:..

    最后更新时间:..

    Parameter optimization design of vehicle E-HHPS system based on an improved MOPSO algorithm

    点击次数:

    所属单位:能源与动力学院

    发表刊物:ADVANCES IN ENGINEERING SOFTWARE

    关键字:Electric-hydraulic hybrid steering parameter optimization multi-objective particle swarm optimization decomposition method

    摘要:To improve the handling stability as well as reduce the steering energy consumption of heavy commercial vehicle, a novel electric-hydraulic hybrid power steering (E-HHPS) system with multiple steering modes is presented, which enables the vehicle to acquire the steering handiness at low speed and better steering road feeling at high speed by switching the actuator unit according to the current working condition. In this paper, to achieve the design goals of E-HHPS system, which are to reduce steering energy consumption and improve steering stability, three evaluation indexes of E-HHPS system are established, which convert the E-HHPS system parameter optimization problem into a multi-objective optimization model. Because it is difficult to approximate the Pareto front of the transformed optimization model by basic algorithms, a multi-objective particle swarm optimization algorithm based on adaptive decomposition (MOPSO/AD) is proposed. Test functions are used to verify the performance of the algorithm and test results show that the MOPSO/AD algorithm has better comprehensive performance and stability compared with the basic MOPSO algorithm and MOEA/D algorithm. The MOPSO/AD algorithm is applied to solve the E-HHPS system optimization model and simulation results show that the proposed MOPSO/AD algorithm has better convergence in solving the E-HHPS parameter optimization problem compared with MOPSO, which enables the optimized E-HHPS system has good handling stability and low steering energy consumption.

    ISSN号:0965-9978

    是否译文:

    发表时间:2018-09-01

    合写作者:栾众楷,王春燕

    通讯作者:赵万忠