![]() |
个人信息Personal Information
教授 博士生导师
招生学科专业:
机械工程 -- 【招收博士、硕士研究生】 -- 机电学院
航空宇航科学与技术 -- 【招收博士、硕士研究生】 -- 机电学院
机械 -- 【招收博士、硕士研究生】 -- 机电学院
性别:女
学历:南京航空航天大学
学位:工学博士学位
所在单位:机电学院
办公地点:明故宫校区15-203
联系方式:zhangly@nuaa.edu.cn
电子邮箱:
Measuring shape and motion of a high-speed object with designed features from motion blurred images
点击次数:
所属单位:理学院
发表刊物:MEASUREMENT
关键字:Motion blur Vision based measurement Inner-frame path Trans-frame path Blurred targets recognition 3D reconstruction
摘要:Vision-based geometry measurement plays a crucial role in many science and industrial areas. Plenty of researches devoted to measuring static objects, while few focused on motion blurred situations, which inevitably arise when the object being measured moves fast relative to the camera(s). Motion blur usually invalids the vision-based measurement algorithms designated for static objects. In this paper, we devote to accurate three dimensional (3D) reconstruction of moving objects from motion blurred stereo image pairs. A convolutional neural network (CNN) based method is first proposed to recognize the motion blurred visual targets. A motion blur model based on inner-frame path superposition imaging is then established. Finally, an optimization framework is set up to reconstruct the 3D target motion path during the camera exposure. Experiments are involved to demonstrate the validity and accuracy of the method. (C) 2019 Elsevier Ltd. All rights reserved.
ISSN号:0263-2241
是否译文:否
发表时间:2019-10-01
合写作者:Chen, Mingjun,张丽艳,叶南,Tao, Cong
通讯作者:张丽艳,周含策