• 其他栏目

    郑前钢

    • 副研究员 硕士生导师
    • 招生学科专业:
      动力工程及工程热物理 -- 【招收硕士研究生】 -- 能源与动力学院
      航空宇航科学与技术 -- 【招收硕士研究生】 -- 能源与动力学院
      能源动力 -- 【招收硕士研究生】 -- 能源与动力学院
    • 性别:男
    • 毕业院校:南京航空航天大学
    • 学历:博士研究生毕业
    • 学位:博士
    • 所在单位:能源与动力学院
    • 办公地点:明故宫A10-504
    • 联系方式:zhqg@nuaa.edu.cn
    • 电子邮箱:

    访问量:

    开通时间:..

    最后更新时间:..

    Aero-Engine On-Board Dynamic Adaptive MGD Neural Network Within a Large Flight Envelope

    点击次数:

    发表刊物:IEEE ACCESS

    关键字:Neural network; real-time; dynamic adaptive model; support vector regression; data storage

    摘要:A novel modeling method, which is based on a min-batch gradient descent neural network (MGD NN), is proposed to establish an adaptive dynamic model of a turbofan engine in a large flight envelope. For establishing a high precision engine dynamic model in a large flight envelope, it always needs a very big training data. This proposed method adopts the MGD algorithm, which is more suitable to train a neural network for big training data due to it consumes much less time to update NN parameters. Dramatically, the huger training data of the MGD NN is the better generalization performance it would be. Furthermore, a regularization strategy, which will also improve the generalization performance of the MGD NN, is applied here. Finally, compared with a popular support vector regression (SVR) modeling method, the proposed method for the adaptive dynamic model of the turbofan engine is validated within a supersonic cruise envelops. The results show that the proposed method has not only much hi

    论文类型:期刊论文

    卷号:6

    页面范围:45755-45761

    ISSN号:2169-3536

    是否译文:

    发表时间:2018-09-01

    收录刊物:SCIE

    合写作者:李永进,胡忠志

    通讯作者:张海波