• 其他栏目

    张康康

    • 副研究员
    • 学历:南京航空航天大学
    • 学位:工学博士学位
    • 所在单位:自动化学院
    • 电子邮箱:

    访问量:

    开通时间:..

    最后更新时间:..

    Interval Sliding Mode Observer Based Incipient Sensor Fault Detection With Application to a Traction Device in China Railway High-Speed

    点击次数:

    所属单位:自动化学院

    发表刊物:IEEE Trans. Veh. Technol.

    摘要:This paper proposes an interval sliding mode observer (ISMO) and an incipient sensor faults detection method for a class of nonlinear control systems with observer unmatched uncertainties. The interval bounds for continuous nonlinear functions and new injection functions are constructed to design ISMOs. An incipient fault detection framework with newly designed residual and threshold generators is proposed. The detectability is then studied, and a set of sufficient detectable conditions are presented. Applications to an electrical traction device used in China Railway High-speed (CRH) are presented to verify the effectiveness of the proposed incipient sensor fault detection methodology. © 1967-2012 IEEE.

    ISSN号:0018-9545

    是否译文:

    发表时间:2019-03-01

    合写作者:姜斌,Yan, Xing-Gang,沈俊

    通讯作者:张康康