扫描手机二维码

欢迎您的访问
您是第 位访客

开通时间:..

最后更新时间:..

  • 张道强 ( 教授 )

    的个人主页 http://faculty.nuaa.edu.cn/zdq1/zh_CN/index.htm

  •   教授   博士生导师
  • 招生学科专业:
    网络空间安全 -- 【招收博士、硕士研究生】 -- 计算机科学与技术学院
    计算机科学与技术 -- 【招收博士、硕士研究生】 -- 人工智能学院
    软件工程 -- 【招收博士、硕士研究生】 -- 人工智能学院
    电子信息 -- 【招收博士、硕士研究生】 -- 人工智能学院
论文成果 当前位置: 中文主页 >> 科学研究 >> 论文成果
Low-rank representation for multi-center autism spectrum disorder identification

点击次数:
所属单位:计算机科学与技术学院/人工智能学院/软件学院
发表刊物:Lect. Notes Comput. Sci.
摘要:Effective utilization of multi-center data for autism spectrum disorder (ASD) diagnosis recently has attracted increasing attention, since a large number of subjects from multiple centers are beneficial for investigating the pathological changes of ASD. To better utilize the multi-center data, various machine learning methods have been proposed. However, most previous studies do not consider the problem of data heterogeneity (e.g., caused by different scanning parameters and subject populations) among multi-center datasets, which may degrade the diagnosis performance based on multi-center data. To address this issue, we propose a multi-center low-rank representation learning (MCLRR) method for ASD diagnosis, to seek a good representation of subjects from different centers. Specifically, we first choose one center as the target domain and the remaining centers as source domains. We then learn a domain-specific projection for each source domain to transform them into an intermediate representation space. To further suppress the heterogeneity among multiple centers, we disassemble the learned projection matrices into a shared part and a sparse unique part. With the shared matrix, we can project target domain to the common latent space, and linearly represent the source domain datasets using data in the transformed target domain. Based on the learned low-rank representation, we employ the k-nearest neighbor (KNN) algorithm to perform disease classification. Our method has been evaluated on the ABIDE database, and the superior classification results demonstrate the effectiveness of our proposed method as compared to other methods. © Springer Nature Switzerland AG 2018.
ISSN号:0302-9743
是否译文:否
发表时间:2018-01-01
合写作者:Wang, Mingliang,Huang, Jiashuang,Shen, Dinggang,Liu, Mingxia
通讯作者:张道强

 

版权所有©2018- 南京航空航天大学·信息化处(信息化技术中心)