扫描手机二维码

欢迎您的访问
您是第 位访客

开通时间:..

最后更新时间:..

  • 张道强 ( 教授 )

    的个人主页 http://faculty.nuaa.edu.cn/zdq1/zh_CN/index.htm

  •   教授   博士生导师
  • 招生学科专业:
    网络空间安全 -- 【招收博士、硕士研究生】 -- 计算机科学与技术学院
    计算机科学与技术 -- 【招收博士、硕士研究生】 -- 人工智能学院
    软件工程 -- 【招收博士、硕士研究生】 -- 人工智能学院
    电子信息 -- 【招收博士、硕士研究生】 -- 人工智能学院
论文成果 当前位置: 中文主页 >> 科学研究 >> 论文成果
Margin distribution logistic machine

点击次数:
所属单位:计算机科学与技术学院/人工智能学院/软件学院
发表刊物:Proc. SIAM Int. Conf. Data Min., SDM
摘要:Linear classifier is an essential part of machine learning, and improving its robustness has attracted much effort. Logistic regression (LR) is one of the most widely used linear classifier for its simplicity and probabilistic output. To reduce the risk of overfitting, LR was enhanced by introducing a generalized logistic loss (GLL) with a L2-norm regularization, aiming to maximize the minimum margin. However, the strategy of maximizing minimal margin is less robust to noisy data. In this paper, we incorporate GLL with margin distribution to exploit the statistical information from the training data, and propose a margin distribution logistic machine (MDLM) for better generalization performance and robustness. Furthermore, we extend MDLM to a multi-class version and learn different classes simultaneously by utilizing more information shared across these classes. Extensive experimental results validate the effectiveness of MDLM on both binary classification and multi-class classification. Copyright © by SIAM.
是否译文:否
发表时间:2017-01-01
合写作者:黄圣君,XT20075,张道强
通讯作者:丁毅

 

版权所有©2018- 南京航空航天大学·信息化处(信息化技术中心)