扫描手机二维码

欢迎您的访问
您是第 位访客

开通时间:..

最后更新时间:..

  • 张道强 ( 教授 )

    的个人主页 http://faculty.nuaa.edu.cn/zdq1/zh_CN/index.htm

  •   教授   博士生导师
  • 招生学科专业:
    网络空间安全 -- 【招收博士、硕士研究生】 -- 计算机科学与技术学院
    计算机科学与技术 -- 【招收博士、硕士研究生】 -- 人工智能学院
    软件工程 -- 【招收博士、硕士研究生】 -- 人工智能学院
    电子信息 -- 【招收博士、硕士研究生】 -- 人工智能学院
论文成果 当前位置: 中文主页 >> 科学研究 >> 论文成果
Deep model-based feature extraction for predicting protein subcellular localizations from bio-images

点击次数:
所属单位:计算机科学与技术学院/人工智能学院/软件学院
发表刊物:FRONTIERS OF COMPUTER SCIENCE
关键字:partial parameter transfer subcellular location classification feature extraction deep model convolution neural network
摘要:Protein subcellular localization prediction is important for studying the function of proteins. Recently, as significant progress has been witnessed in the field of microscopic imaging, automatically determining the subcellular localization of proteins from bio-images is becoming a new research hotspot. One of the central themes in this field is to determine what features are suitable for describing the protein images. Existing feature extraction methods are usually hand-crafted designed, by which only one layer of features will be extracted, which may not be sufficient to represent the complex protein images. To this end, we propose a deep model based descriptor (DMD) to extract the high-level features from protein images. Specifically, in order to make the extracted features more generic, we firstly trained a convolution neural network (i.e., AlexNet) by using a natural image set with millions of labels, and then used the partial parameter transfer strategy to fine-tune the parameters from natural images to protein images. After that, we applied the Lasso model to select the most distinguishing features from the last fully connected layer of the CNN (Convolution Neural Network), and used these selected features for final classifications. Experimental results on a protein image dataset validate the efficacy of our method.
ISSN号:2095-2228
是否译文:否
发表时间:2017-04-01
合写作者:丁毅,Shen, Hong-Bin,张道强
通讯作者:葛少卫

 

版权所有©2018- 南京航空航天大学·信息化处(信息化技术中心)