扫描手机二维码

欢迎您的访问
您是第 位访客

开通时间:..

最后更新时间:..

  • 张道强 ( 教授 )

    的个人主页 http://faculty.nuaa.edu.cn/zdq1/zh_CN/index.htm

  •   教授   博士生导师
  • 招生学科专业:
    网络空间安全 -- 【招收博士、硕士研究生】 -- 计算机科学与技术学院
    计算机科学与技术 -- 【招收博士、硕士研究生】 -- 人工智能学院
    软件工程 -- 【招收博士、硕士研究生】 -- 人工智能学院
    电子信息 -- 【招收博士、硕士研究生】 -- 人工智能学院
论文成果 当前位置: 中文主页 >> 科学研究 >> 论文成果
基于融合欧氏距离与Kendall Tau距离度量的谱聚类算法(英文)

点击次数:
所属单位:计算机科学与技术学院/人工智能学院/软件学院
发表刊物:控制理论与应用
关键字:Kendall Tau距离;距离度量;相似性融合;谱聚类;
摘要:大多数现存的谱聚类方法均使用传统距离度量计算样本之间的相似性,这样仅仅考虑了两两样本之间的相似性而忽略了周围的近邻信息,更没有顾及数据的全局性分布结构.因此,本文提出一种新的融合欧氏距离和Kendall Tau距离的谱聚类方法.该方法通过融合两两样本之间的直接距离以及其周围的近邻信息,充分利用了不同的相似性度量可以从不同角度抓取数据之间结构信息的优势,更加全面地反映数据的底层结构信息.通过与传统聚类算法在UCI标准数据集上的实验结果作比较,验证了本文的方法可以显著提高聚类效果.
是否译文:否
发表时间:2017-09-08
合写作者:光俊叶,邵伟,孙亮
通讯作者:张道强

 

版权所有©2018- 南京航空航天大学·信息化处(信息化技术中心)