![]() |
个人信息Personal Information
教授
招生学科专业:
力学 -- 【招收硕士研究生】 -- 航空学院
航空宇航科学与技术 -- 【招收博士、硕士研究生】 -- 航空学院
机械 -- 【招收博士、硕士研究生】 -- 航空学院
主要任职:“飞行器环境控制与生命保障”重点实验室副主任
其他任职:南京市妇联执委、秦淮区政协常委
毕业院校:南京航空航天大学
学历:南京航空航天大学
学位:工学博士学位
所在单位:航空学院
办公地点:南京航空航天大学明故宫校区C12-502
联系方式:84893739(Tel) yuli_happy@163.com
电子邮箱:
Fluid-structure interaction study of the supersonic parachute using large-eddy simulation
点击次数:
所属单位:航空学院
发表刊物:ENGINEERING COMPUTATIONS
关键字:Compressible flow Fluid-structure interaction Breathing phenomenon Membrane structure Shock wave oscillation Supersonic parachute
摘要:Purpose The purpose of this study is to model the dynamic characteristics of an opened supersonic disk-gap-band parachute. Design/methodology/approach A fluid-structure interaction (FSI) method with body-fitted mesh is used to simulate the supersonic parachute. The compressible flow is modeled using large-eddy simulation (LES). A contact algorithm based on the penalty function with a virtual contact domain is proposed to solve the negative volume problem of the body-fitted mesh. Automatic unstructured mesh generation and automatic mesh moving schemes are used to handle complex deformations of the canopy. Findings The opened disk-gap-band parachute is simulated using Mach 2.0, and the simulation results fit well with the wind tunnel test data. It is found that the LES model can successfully predict large-scale turbulent vortex in the flow. This study also demonstrates the capability of the present FSI method as a tool to predict shock oscillation and breathing phenomenon of the canopy. Originality/value The contact algorithm based on the penalty function with a virtual contact domain is proposed for the first time. This methodology can be used to solve the negative volume problem of the dynamic mesh in the flow field.
ISSN号:0264-4401
是否译文:否
发表时间:2018-01-01
合写作者:杨雪,杨雪,Zhao, Xiao-Shun
通讯作者:余莉