Affiliation of Author(s):计算机科学与技术学院/人工智能学院/软件学院
Journal:吉林大学学报(工学版)
Key Words:人工智能;聚类;量子计算;量子算法;量子k-means;
Abstract:为提高经典k-means算法的计算效率,引入量子计算理论得到量子k-means算法。先将聚类数据和k个聚类中心制备成量子态,并行计算其相似度,接着利用相位估计算法将相似度信息保存到量子比特中,然后利用最小值查找量子算法查找最相似的聚类中心点。对比两种算法的复杂度可知,在一定条件下,相对经典算法而言,量子k-means算法的时间复杂度降低,空间复杂度得到指数级降低。
Translation or Not:no
Date of Publication:2017-06-05
Co-author:刘雪娟,Xu Juan,段博佳
Correspondence Author:Yuan Jiabing
Professor
Supervisor of Doctorate Candidates
Main positions:图书馆馆长
Alma Mater:南京航空航天大学
Education Level:南京航空航天大学
Degree:Doctoral Degree in Engineering
School/Department:College of Computer Science and Technology
Business Address:南京航空航天大学将军路校区计算机科学与技术学院院楼318
Contact Information:邮箱:jbyuan@nuaa.edu.cn 联系电话:13805165286
Open time:..
The Last Update Time:..