中文

LIMITING BEHAVIOR OF TRAJECTORY ATTRACTORS OF PERTURBED REACTION-DIFFUSION EQUATIONS

Hits:

  • Affiliation of Author(s):理学院

  • Journal:DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B

  • Key Words:Reaction-diffusion equations perturbation trajectory attractor global attractor convergence fractal dimension

  • Abstract:In this paper, we study the relations between the long-time dynamical behavior of the perturbed reaction-diffusion equations and the exact reaction-diffusion equations with concave and convex nonlinear terms and prove that bounded sets of solutions of the perturbed reaction-diffusion equations converges to the trajectory attractor u(0) of the exact reaction-diffusion equations when t -> infinity and epsilon -> 0(+). In particular, we show that the trajectory attractor u(epsilon) of the perturbed reaction-diffusion equations converges to the trajectory attractor u(0) of the exact reaction-diffusion equations when epsilon -> 0(+). Moreover, we derive the upper and lower bounds of the fractal dimension for the global attractor of the perturbed reaction-diffusion equations.

  • ISSN No.:1531-3492

  • Translation or Not:no

  • Date of Publication:2019-10-01

  • Correspondence Author:ygc

  • Date of Publication:2019-10-01

Copyright©2018- Nanjing University of Aeronautics and Astronautics·Informationization Department(Informationization Technology Center) Click:
  MOBILE Version

The Last Update Time:..