Yang Liming
Professor Supervisor of Doctorate Candidates
Main positions:空气动力学系
Gender:Male
Alma Mater:南京航空航天大学
Education Level:南京航空航天大学
Degree:Doctoral Degree in Engineering
School/Department:航空学院
Discipline:Other specialties in Mechanical Engineering. Flight Vehicle Design. Fluid Mechanics
Business Address:C12-407
Contact Information:lmyang@nuaa.edu.cn
E-Mail:
2003.9 -- 2006.6
黔东南州民族高中  普通高中毕业  无学位
2006.9 -- 2010.6
南京航空航天大学  Flight Vehicle Design  本科毕业  Bachelor's Degree in Engineering
2010.9 -- 2013.3
南京航空航天大学  流体力学  With Certificate of Graduation for Study as Master's Candidates  Master's Degree in Engineering
2013.9 -- 2016.12
南京航空航天大学  流体力学  With Certificate of Graduation for Doctorate Study  Doctoral Degree in Engineering
2014.9 -- 2016.9
新加坡国立大学  Fluid Mechanics  联合培养博士  无学位
计算流体力学算法与应用
稀薄流数值模拟
气体动理学算法研究
流-固耦合计算与分析
机器学习与量子计算
2013.4 -- 2013.8
贵州航空发动机研究所
2016.11 -- 2020.11
新加坡国立大学
杨鲤铭,教授,博士生导师,国家级青年人才,江苏省特聘教授。主要从事流体动力学计算方法及其应用研究,包括连续到稀薄流动全流域准确高效计算方法、气体动理学格式、复杂外形及运动边界流固耦合问题、机器学习和量子计算等。相关研究成果在Journal of Computational Physics,Journal of Fluid Mechanics,Physics of Fluids和Physical Review E等流体力学领域期刊上发表SCI论文100余篇,出版英文专著1部。获中国力学优秀博士学位论文提名奖、中国空气动力学会科学技术二等奖、胡海岩科技创新奖。
担任中国空气动力学会青年工作委员会副主任委员、中国空气动力学会低跨超声速专业委员会委员,美国数学会American Mathematical Society(AMS)评论员,《气动研究与实验》青年编委,Entropy和Advances in Mechanical Engineering期刊客座编辑,Journal of Computational Physics等30余种SCI期刊审稿人。
主要研究兴趣:
计算流体力学算法与应用
稀薄气体动力学建模与模拟
气体动理学算法研究
流-固耦合计算与分析
机器学习与量子计算
招收力学、航空宇航科学与技术、机械方向的硕士、博士研究生,同时常年招收博士后。
办公室地址 : 流体楼C12-407 邮箱 : lmyang@nuaa.edu.cn 欢迎发邮件或到办公室来交流。
主讲课程:
本科生课程:《数值计算方法》
研究生课程:《计算流体力学进展》、《国家数值风洞自主软件基础理论与工程应用》
近年科研项目:
[1] 国家级青年人才项目,2022/1-2024/12,主持。
[2] 江苏省特聘教授人才项目,2021/11-2024/11,主持。
[3] 江苏省自然科学基金青年项目,连续到稀薄跨流域高效算法研究及其应用,2021/7-2024/6,主持。
[4] 国家自然科学基金青年项目,面向航天器无控陨落预报的高效跨流域算法研究,2023/1-2025/12,主持。
[5] 国家自然科学基金重大研究计划培育项目,跨域飞行器非定常气动力热结构耦合传热模型和算法研究,2023/1-2025/12,主持。
[6] 航空航天结构力学及控制全国重点实验室自主研究课题,面向流体数值模拟的量子计算方法研究,2024/6-2025/6,主持。
[7] 青年科技创新基金,基于自适应分区的高效跨流域算法研究及应用,2023/1-2024-12,主持。
[8] 国防173重点项目子课题,2023/12-2026/12,主持.
近年发表论文论著:
2024年
[1] Du, Y. J., Yang, L. M.*, Xiao, Y., Song, Y. X., & Shu, C.* (2024). An immersed boundary velocity correction method combined with virtual body-fitted grid for simulation of incompressible flows. Physics of Fluids, 36(1).
[2] Du, Y. J., Yang, L. M.*, Shu, C.*, Dong, H., Xiao, Y., & Song, Y. X. (2024). Virtual body-fitted grid-based immersed boundary method for simulation of thermal flows with Dirichlet and Neumann boundary conditions. Journal of Computational Physics, 519, 113450.
[3] Xiao, Y., Yang, L. M.*, Shu, C.*, Chew, S. C., Khoo, B. C., Cui, Y. D., & Liu, Y. Y. (2024). Physics-informed quantum neural network for solving forward and inverse problems of partial differential equations. Physics of Fluids, 36(9).
[4] Xiao, Y., Yang, L. M.*, Shu, C.*, Dong, H., Du, Y. J., & Song, Y. X. (2024). Least-square finite difference-based physics-informed neural network for steady incompressible flows. Computers & Mathematics with Applications, 175, 33-48.
[5] Song, Y. X., Yang, L. M.*, Du, Y. J., Xiao, Y., & Shu, C.* (2024). Double distribution function-based lattice Boltzmann flux solver for simulation of compressible viscous flows. Physics of Fluids, 36(6).
[6] Zhou, J. X., Yang, L. M.*, Wang, Y. P.*, Niu, X. D., Wu, J., Han, L. C., & Khan, A. (2024). Dynamic behavior of floating ferrofluid droplet through an orifice with a magnetic field. Computers & Fluids, 279, 106341.
[7] Jiang, L., Wu, J., Yang, L. M., & Qin, Q. (2024). High-order gas kinetic flux solver with TENO-THINC scheme for compressible flows. Computers & Fluids, 106492.
[8] Jiang, L., Wu, J., Yang, L. M., & Dong, H. (2024). High‐order gas kinetic flux solver for viscous compressible flow simulations. International Journal for Numerical Methods in Fluids, 96(5), 789-805.
[9] Yuan, Z. Y., Yang, L. M., Shu, C., Jiang, K., & Zhang, L. Q. (2024). A variant of improved discrete velocity method for efficient simulation of flows in entire Knudsen number regimes. Physics of Fluids, 36(2).
[10] Shen, X., Zeng, K., Yang, L. M., Zhu, C., & Dala, L. (2024). A new exploration on passive control of transonic flow over a backward-facing step. International Journal of Numerical Methods for Heat & Fluid Flow.
[11] Wang, Y., Li, D. M., Liu, J. L., Zhao, F. Y., Yang, L. M., & Yu, W. B. (2024). Investigations of vortex dynamics driven primary breakup in diesel spray based on multiphase lattice Boltzmann flux solver. Physics of Fluids, 36(7).
2023年
[1] Yang, L. M.*, Han, L. C., Ding, H., Li, Z. H., Shu, C., & Liu, Y. Y. (2023). Adaptive partitioning-based discrete unified gas-kinetic scheme for flows in all flow regimes. Advances in Aerodynamics, 5, 15.
[2] Yang, L. M.*, Li, Z. H.*, Shu, C., Liu, Y. Y., Liu, W., & Wu, J. (2023). Discrete unified gas-kinetic wave-particle method for flows in all flow regimes. Physical Review E, 108(1), 015302.
[3] Xiao, Y., Yang, L. M.*, Du, Y. J., Song, Y. X., & Shu, C.* (2023). Radial basis function-differential quadrature-based physics-informed neural network for steady incompressible flows. Physics of Fluids, 35(7).
[4] Du, Y. J., Yang, L. M.*, Shu, C.*, Xiao, Y., & Song, Y. X. (2023). Inverse distance weighting interpolation-based immersed boundary velocity correction method for incompressible flows. Physics of Fluids 35 (8).
[5] Han, L. C., Yang, L. M.*, Li, Z. H.*, Wu, J., Du, Y. J., & Shen, X. (2023). Unlocking the key to accelerating convergence in the discrete velocity method for flows in the near continuous/continuous flow regimes. Entropy, 25(12), 1609.
[6] Liu, W., Yang, L. M., Zhang, Z. L., Teo, C. J., & Shu, C. (2023). Simplified hydrodynamic-wave particle method for the multiscale rarefied flow. Applied Mathematical Modelling, 116, 469–489.
[7] Liu, Y. Y., Shu, C., Yang, L. M., Liu, Y. G., Liu, W., & Zhang, Z. L. (2023). High-Order Implicit RBF-based Differential Quadrature-Finite Volume Method on Unstructured Grids: Application to Inviscid and Viscous Compressible Flows. Journal of Computational Physics, 478, 111962.
[8] Chen, Z., Zhang, L. Q., & Yang, L. M. (2023). Kinetic Theory-Based Methods in Fluid Dynamics. Entropy, 25(2), 255.
[9] Jiang, L., Wu, J., Yang, L. M., & Dong, H. (2023). Gas kinetic flux solver based finite volume weighted essentially non-oscillatory scheme for inviscid compressible flows. Applied Mathematics and Mechanics, 44(6), 961-980.
[10] Ma, C., Wu, J., Gu, X.Y., & Yang, L.M (2023). A three-dimensional high-order flux reconstruction lattice Boltzmann flux solver for incompressible laminar and turbulent flows. Computers & Fluids, 106008.
[11] Shen, X., Avital, E., Ikram, Z., Yang, L. M., Korakianitis, T., & Dala, L. (2023). Influence of curvature distribution smoothing on the reduction of aerofoil self-noise. International Journal of Numerical Methods for Heat & Fluid Flow, 33(4), 1379-1393.
[12] Jiang, Q.H., Shu, C., Zhu, L.L., Yang, L.M., Liu, Y.Y., & Zhang, Z.L. (2023) Applications of finite difference‐based physics‐informed neural networks to steady incompressible isothermal and thermal flows. International Journal for Numerical Methods in Fluids 95 (10), 1565-1597.
[13] Yuan, Z. Y., Yang, L. M., Shu, C., Jiang, K., & Chen, Z. (2023). Complete third-order polynomial expansion-based gas kinetic flux solver for flows from continuum regime to rarefied regime. Physics of Fluids, 35(12).
[14] Wang, Y., Gao, S. Y., Zhao, F. Y., Yang, L. M., & Yu, W. B. (2023). Investigations of spray breakup Rayleigh–Taylor instability via multiphase lattice Boltzmann flux solver. Physics of Fluids, 35(12).
[15] Wang, Y. P., Zhou, J. X., Li, J. Q., Khan, A., Niu, X. D., Chen, M. F., & Yang, L. M. (2023). Magnetic field-enhanced orifice traversal of droplets: Minimizing surface adhesion for improved efficiency. Physics of Fluids, 35(12).
2022年
[1] Yang, L. M.*, Shu, C., Wu, J., Liu, Y. Y., & Shen, X. (2022). An efficient discrete velocity method with inner iteration for steady flows in all flow regimes. Physics of Fluids, 34(2), 027110.
[2] Liu, Y. Y., Yang, L. M.*, Shu, C.*, Zhang, Z. L., & Yuan, Z. Y. (2022). An implicit high-order radial basis function-based differential quadrature-finite volume method on unstructured grids to simulate incompressible flows with heat transfer. Journal of Computational Physics, 467, 111461.
[3] Du, Y. J., Yang, L. M.*, Shu, C.*, Wu, J., & Wang, Y. (2022). Wall model‐based diffuse‐interface immersed boundary method for simulation of incompressible turbulent flows. International Journal for Numerical Methods in Fluids, 94, 1888–1908.
[4] Xiao, Y., Yang, L. M.*, Yuan, H. Z.*, & Shu, C. (2022). A hybrid multilayer perceptron‑radial basis function (HMLP‑RBF) neural network for solving hyperbolic conservation laws. SN Computer Science, 3, 490.
[5] Zhang, D., Huang, Q. G., Pan, G., Yang, L. M., & Huang, W. X. (2022). Vortex dynamics and hydrodynamic performance enhancement mechanism in batoid fish oscillatory swimming. Journal of Fluid Mechanics, 930.
[6] Zhao, X., Yang, L. M., & Shu, C. (2022). An implicit lattice Boltzmann flux solver for simulation of compressible flows. Computers & Mathematics with Applications, 107, 82-94.
[7] Lin, X., Wu, J., Yang, L. M., & Dong, H. (2022). Two-dimensional hydrodynamic schooling of two flapping swimmers initially in tandem formation. Journal of Fluid Mechanics, 941.
[8] Ma, C., Wu, J., Yang, L. M., & Dong, H. (2022). A coupled high-order implicit-explicit flux reconstruction lattice Boltzmann method for nearly incompressible thermal flows. International Journal of Heat and Mass Transfer, 187, 122575.
[9] Ma, C., Wu, J., Yu, H., & Yang, L. M. (2022). A high-order implicit-explicit flux reconstruction lattice Boltzmann method for viscous incompressible flows. Computers & Mathematics with Applications, 105, 13-28.
[10] Ma, C., Wu, J., & Yang, L. M. (2022). A novel high-order solver for simulation of incompressible flows using the flux reconstruction method and lattice Boltzmann flux solver. Computers & Fluids, 105673.
[11] Lu, J. H., Lei, H., Dai, C. S., Yang, L. M., & Shu, C. (2022). Analyses and reconstruction of the lattice Boltzmann flux solver. Journal of Computational Physics, 453, 110923.
[12] Liu, Z. J., Shu, C., Chen, S. Y., Liu, W., Yuan, Z. Y., & Yang, L. M. (2022). Development of explicit formulations of G45-based gas kinetic scheme for simulation of continuum and rarefied flows. Physical Review E, 105(4), 045302.
[13] Zhao, X., Yang, L. M, Xu, C., & Shu, C. (2022). An overset boundary condition-enforced immersed boundary method for incompressible flows with large moving boundary domains. Physics of Fluids, 34(10), 103613.
[14] Ma, C., Wu, J., Gu, X., & Yang, L. M (2022). High-order flux reconstruction thermal lattice Boltzmann flux solver for simulation of incompressible thermal flows. Physical Review E, 106(3), 035301.
[15] 杨鲤铭*, 李志辉, 舒昌. 离散速度方法及其在跨流域问题中的应用研究进展. 南京航空航天大学学报, 2022, 54(4): 537-551.
[16] 杨鲤铭*, 吴杰, 董昊, 杜银杰. 基于速度空间非结构网格和守恒修正的改进离散速度方法[J]. 航空学报, 2022, 43(12): 627033.
[17] 舒昌, 杨鲤铭*, 王岩, 吴杰 . 格子玻尔兹曼和气体动理学通量算法及其应用进展. 南京航空航天大学学报, 2022, 54(5): 801 ⁃816.
[18] 陈臻, 舒昌, 张良奇, 杨鲤铭. 基于相场-格子Boltzmann通量求解器的固-液相变模拟. 中国科学: 物理学 力学 天文学, 2022, 52: 104703.
[19] 肖扬, 杨鲤铭*, 舒昌. 一种适用于神经网络求解偏微分方程的自适应取点算法. 气动研究与实验, 2022, 34(04): 74-82.
2021年
[1] Yang, L. M., Shu, C., Chen, Z., Liu, Y. Y., Wang, Y., & Shen, X. (2021). High-order gas kinetic flux solver for simulation of two dimensional incompressible flows. Physics of Fluids, 33(1), 017107.
[2] Yang, L. M., Shu, C., Chen, Z., Liu, Y. Y., Wu, J., & Shen, X. (2021). Gas kinetic flux solver based high-order finite-volume method for simulation of two-dimensional compressible flows. Physical Review E, 104(1), 015305.
[3] Yang, L. M., Zhao, X., Shu, C., & Du, Y. J. (2021). Parametric reduced order modeling-based discrete velocity method for simulation of steady rarefied flows. Journal of Computational Physics, 430, 110037.
[4] Chen, Z., Yang, L. M., Shu, C., Zhao, X., Liu, N. Y., & Liu, Y. Y. (2021). Mixed convection between rotating sphere and concentric cubical enclosure. Physics of Fluids, 33(1), 013605.
[5] Liu, Z. J., Yang, L. M., Shu, C., Chen, S. Y., Wan, M. P., Liu, W., & Yuan, Z. Y. (2021). Explicit formulations of G13-based gas kinetic flux solver (G13-GKFS) for simulation of continuum and rarefied flows. Physics of Fluids, 33(3), 037133.
[6] Yuan, Z. Y., Yang, L. M., Shu, C., Liu, Z. J., & Liu, W. (2021). A novel gas kinetic flux solver for simulation of continuum and slip flows. International Journal for Numerical Methods in Fluids, 93(9), 2863-2888.
[7] Liu, Y. Y., Yang, L. M., Shu, C., & Zhang, H. W. (2021). Efficient high-order radial basis-function-based differential quadrature–finite volume method for incompressible flows on unstructured grids. Physical Review E, 104(4), 045312.
[8] Liu, Y. Y., Shu, C., Zhang, H. W., Yang, L. M., & Lee, C. B. (2021). An efficient high-order least square-based finite difference-finite volume method for solution of compressible Navier-Stokes equations on unstructured grids. Computers & Fluids, 222, 104926.
[9] Liu, Y. Y., Shu, C., Zhang, H. W., & Yang, L. M. (2021). A high-order implicit least square-based finite difference-finite volume method for incompressible flows on unstructured grids. Physics of Fluids, 33(5), 053601.
[10] Lin, X., Wu, J., Zhang, T. W., & Yang, L. M. (2021). Flow-mediated organization of two freely flapping swimmers. Journal of Fluid Mechanics, 912.
[11] Zhao, X., Chen, Z., Yang, L. M., Liu, N. Y., & Shu, C. (2021). Efficient boundary condition-enforced immersed boundary method for incompressible flows with moving boundaries. Journal of Computational Physics, 110425.
[12] Liu, W., Liu, Y. Y., Yang, L. M., Liu, Z. J., Yuan, Z. Y., Shu, C., & Teo, C. J. (2021). Coupling improved discrete velocity method and G13-based gas kinetic flux solver: A hybrid method and its application for non-equilibrium flows. Physics of Fluids, 33(9), 092007.
[13] Chen, Z., Shu, C., Yang, L. M., Zhao, X., & Liu, N. Y. (2021). Phase-field-simplified lattice Boltzmann method for modeling solid-liquid phase change. Physical Review E, 103(2), 023308.
[14] Yuan, Z. Y., Shu, C., Liu, Z. J., Yang, L. M., & Liu, W. (2021). Variant of gas kinetic flux solver for flows beyond Navier-Stokes level. Physical Review E, 104(5), 055305.
[15] Liu, Y. Y., Yang, L. M., Shu, C., & Zhang, H. W. (2021). A multi-dimensional shock-capturing limiter for high-order least square-based finite difference-finite volume method on unstructured grids. Advances in Applied Mathematics and Mechanics, 13(3), 671-700.
[16] Xia, T. Y., Dong, H., Yang, L. M., Liu, S. C, & Jin, Z. (2021). Investigation on flow structure and aerodynamic characteristics over an airfoil at low Reynolds number—A review. AIP Advances, 11(5), 050701.
[17] 杜银杰, 舒昌, 杨鲤铭, 王岩, 吴杰. 扩散界面浸入边界法结合壁面模型在湍流模拟中的应用[J]. 航空学报, 2021, 42(S1): 726361.
2020年
[1] Yang, L. M., Wang, Y., Chen, Z., & Shu, C. (2020). Lattice Boltzmann and Gas Kinetic Flux Solvers: Theory and Applications. World Scientific, ISBN: 978-981-122-468-3.
[2] Yang, L. M., Shu, C., Chen, Z., & Wu, J. (2020). Three-dimensional lattice Boltzmann flux solver for simulation of fluid-solid conjugate heat transfer problems with curved boundary. Physical Review E, 101(5), 053309.
[3] Liu, Y. Y., Yang, L. M., Shu, C., & Zhang, H. W. (2020). Three-dimensional high-order least square-based finite difference-finite volume method on unstructured grids. Physics of Fluids, 32(12), 123604.
[4] Sun, Y., Yang, L. M.*, Shu, C., & Chen, Y. (2020). A diffuse‐interface immersed boundary method for simulation of compressible viscous flows with stationary and moving boundaries. International Journal for Numerical Methods in Fluids, 92(3), 149-168.
[5] Sun, Y., Yang, L. M.*, Shu, C., & Teo, C. J. (2020). A three-dimensional gas-kinetic flux solver for simulation of viscous flows with explicit formulations of conservative variables and numerical flux. Advances in Aerodynamics, 2(1), 1-28.
[6] Li, J. W., Wang, J. F., Yang, L. M., & Shu, C. (2020). A hybrid lattice Boltzmann flux solver for integrated hypersonic fluid-thermal-structural analysis. Chinese Journal of Aeronautics, 33(9), 2295-2312.
[7] Zhao, X., Wu, C., Chen, Z., Yang, L. M., & Shu, C. (2020). Reduced order modeling-based discrete unified gas kinetic scheme for rarefied gas flows. Physics of Fluids, 32(6), 067108.
[8] Liu, Z. J., Shu, C., Chen, S. Y., Yang, L. M., Wan, M. P., & Liu, W. (2020). A novel solver for simulation of flows from continuum regime to rarefied regime at moderate Knudsen number. Journal of Computational Physics, 415, 109548.
[9] Chen, Y., Shu, C., Sun, Y., Yang, L. M., & Wang, Y. (2020). A diffuse interface IBM for compressible flows with Neumann boundary condition. International Journal of Modern Physics B, 34(14n16), 2040070.
[10] Chen, Z., Shu, C., Wang, Y., & Yang, L. M. (2020). Oblique drop impact on thin film: Splashing dynamics at moderate impingement angles. Physics of Fluids, 32(3), 033303.
[11] Zhang, L. Q., Chen, Z., Yang, L. M., & Shu, C. (2020). Double distribution function-based discrete gas kinetic scheme for viscous incompressible and compressible flows. Journal of Computational Physics, 412, 109428.
[12] Yang, L. M., Yu, Y., Yang, L. M., & Hou, G. X. (2020). Analysis and assessment of the no-slip and slip boundary conditions for the discrete unified gas kinetic scheme. Physical Review E, 101(2), 023312.
[13] Chen, Z., Shu, C., Yang, L. M., Zhao, X., & Liu, N. Y. (2020). Immersed boundary–simplified thermal lattice Boltzmann method for incompressible thermal flows. Physics of Fluids, 32(1), 013605.
[14] Liu, Y. Y., Shu, C., Zhang, H. W., & Yang, L. M. (2020). A high order least square-based finite difference-finite volume method with lattice Boltzmann flux solver for simulation of incompressible flows on unstructured grids. Journal of Computational Physics, 401, 109019.
[15] Lin, X. J., Wu, J., Zhang, T. W., & Yang, L. M. (2020). Self-organization of multiple self-propelling flapping foils: energy saving and increased speed. Journal of Fluid Mechanics, 884.
[16] Yang, T. P., Wang, J. F., Yang, L. M., & Shu, C. (2020). Development of multi-component generalized sphere function based gas-kinetic flux solver for simulation of compressible viscous reacting flows. Computers & Fluids, 197, 104382.
[17] Zhou, D. Z., Yang, W. M., Yang, L. M., & Lu, X. (2020). Modelling internal combustion engines with dynamic staggered mesh refinement. Combustion Theory and Modelling, 24(1), 142-175.
[18] Ren, W. W., Shao, J. Y., Yang, L. M., & Li, T. Q. (2020). Numerical study of heat transfer from two cylinders in tandem with transverse oscillation. Advances in Applied Mathematics and Mechanics, 12(5), 1137-1165.
2019年
[1] Yang, L. M., Shu, C., Yang, W. M., & Wu, J. (2019). An improved three-dimensional implicit discrete velocity method on unstructured meshes for all Knudsen number flows. Journal of Computational Physics, 396, 738-760.
[2] Yang, L. M., Shu, C., Yang, W. M., & Wu, J. (2019). Simulation of conjugate heat transfer problems by lattice Boltzmann flux solver. International Journal of Heat and Mass Transfer, 137, 895-907.
[3] Yang, L. M., Shu, C., Yang, W. M., Wu, J., & Zhang, M. Q. (2019). Numerical investigation on performance of three solution reconstructions at cell interface in DVM simulation of flows in all Knudsen number regimes. International Journal for Numerical Methods in Fluids, 90(11), 545-563.
[4] Dong, H., & Yang, L. M.* (2019). An Immersed Boundary-Simplified Gas Kinetic Scheme for 2D Incompressible Flows with Curved and Moving Boundaries. Advances in Applied Mathematics and mechanics, 11(5), 1177-1199.
[5] Liu, Y. Y., Zhang, H. W., Yang, L. M., & Shu, C. (2019). High-order least-square-based finite-difference–finite-volume method for simulation of incompressible thermal flows on arbitrary grids. Physical Review E, 100(6), 063308.
[6] Yang, T. P., Wang, J. F., Yang, L. M., & Shu, C. (2019). Development of multicomponent lattice Boltzmann flux solver for simulation of compressible viscous reacting flows. Physical Review E, 100(3), 033315.
[7] Zhang, L. Q., Chen, Z., Yang, L. M., & Shu, C. (2019). An improved discrete gas-kinetic scheme for two-dimensional viscous incompressible and compressible flows. Physics of Fluids, 31(6), 066103.
[8] Zhang, L. Q., Chen, Z., Yang, L. M., & Zhang, M. Q. (2019). An improved axisymmetric lattice Boltzmann flux solver for axisymmetric isothermal/thermal flows. International Journal for Numerical Methods in Fluids, 90(12), 632-650.
[9] Lin, X. J., Wu, J., Zhang, T. W., & Yang, L. M. (2019). Phase difference effect on collective locomotion of two tandem autopropelled flapping foils. Physical Review Fluids, 4(5), 054101.
[10] Dong, H., Liu, S. C., Geng, X. Liu, S., Yang, L. M., & Cheng, K. M. (2019). Numerical and experimental investigation into hypersonic boundary layer transition induced by roughness elements. Chinese Journal of Aeronautics, 32(3), 559-567.