已经得到个称赞     给我点赞
  • 硕士生导师
  • 电子邮箱:
  • 所在单位:航空学院
  • 职务:讲师
  • 学历:西北工业大学
  • 办公地点:明故宫校区A8楼608
  • 性别:
  • 联系方式:fanyang@nuaa.edu.cn
  • 学位:工学博士学位
  • 职称:讲师
  • 毕业院校:西北工业大学
论文成果
当前位置: 中文主页 >> 科学研究 >> 论文成果
Android Malware Detection Using Hybrid Analysis and Machine Learning Technique
  • 点击次数:
  • 所属单位:航空学院
  • 发表刊物:CLOUD COMPUTING AND SECURITY, PT II
  • 关键字:Android Malware detection Dynamic analysis Static analysis Machine learning
  • 摘要:This paper proposes a two-stage Android malware detection and classification mechanism based on machine learning algorithm. In this paper, we use the static analysis method to extract the software's package features, permission features, component features and triggering mechanism. Then we use the dynamic analysis tools to obtain the dynamic behavior characters of the software, and format the static and dynamic features. Finally, we use the machine learning algorithm to deal with the feature eigenvectors in two stages, and then we will get the malicious classification of the software. The experimental results show that in the data set used in this paper the proposed method based on the combination of dynamic and static malicious code detection is more accurate than the common detection engine, and the ability of classifying malicious family is much stronger.
  • ISSN号:0302-9743
  • 是否译文:
  • 发表时间:2017-01-01
  • 合写作者:庄毅,汪俊
  • 通讯作者:杨帆
  • 发表时间:2017-01-01