王友仁

教授 博士生导师

个人信息

招生学科专业:
仪器科学与技术 -- 【招收博士、硕士研究生】 -- 自动化学院
电子信息 -- 【招收博士、硕士研究生】 -- 自动化学院
学位:工学博士学位
性别:男
毕业院校:东南大学
学历:南京航空航天大学
所在单位:自动化学院
电子邮箱:

Research on Fault Diagnosis of Planetary Gearbox Based on Hierarchical Extreme Learning Machine

发表时间:2020-01-13 点击次数:
所属单位:自动化学院
发表刊物:Proc. - Progn. Syst. Heal. Manag. Conf., PHM-Chongqing
摘要:Currently, the planetary gear box health monitoring system has collected a huge amount of data, and the data needs to be quickly learned and real-time monitoring diagnostic requirements. The traditional fault diagnosis methods mostly need a complex signal processing process in advance and there are fewer layers, the feature extraction and classification effect are not ideal. In order to diagnose the planetary gearbox effectively, this paper presents a fault diagnosis method for planetary gearbox based on hierarchical extreme learning machine (H-ELM). This method analyses the time domain signal of fault vibration instead of the frequency domain signal, thus eliminates the time for complex signal processing to adaptively mine available fault characteristics and automatically identify machinery health conditions. The Stacked Denoising Auto-encoders (SDAE) and the Deep Belief Network (DBN) were used to test the diagnosis data of planetary gearbox, and make the comparison with hierarchical extreme learning machine methods. The experimental results show that the method has good effect and application value in the fault diagnosis of planetary gearbox. © 2018 IEEE.
是否译文:
发表时间:2019-01-04
合写作者:Sun, Guodong
通讯作者:王友仁
发表时间:2019-01-04

版权所有©2018- 南京航空航天大学·信息化处(信息化技术中心)

访问量: 本月访问: 今日访问量: 最后更新时间:--