王友仁

教授 博士生导师

个人信息

招生学科专业:
仪器科学与技术 -- 【招收博士、硕士研究生】 -- 自动化学院
电子信息 -- 【招收博士、硕士研究生】 -- 自动化学院
学位:工学博士学位
性别:男
毕业院校:东南大学
学历:南京航空航天大学
所在单位:自动化学院
电子邮箱:

Condition Monitoring and Prognosis of Power Converters based on CSA-LSSVM

发表时间:2018-11-13 点击次数:
所属单位:自动化学院
发表刊物:2017 INTERNATIONAL CONFERENCE ON SENSING, DIAGNOSTICS, PROGNOSTICS, AND CONTROL (SDPC)
关键字:Boost converters Condition monitoring Parameter estimation Crow search algorithm(CSA) Prognosis
摘要:Condition monitoring and prognosis are effective methodologies to reduce the downtime and maintenance cost and improve the reliability and lifespan for power electronic converter systems. This paper presents a model-based method to implement the condition estimation and a data-driven method to conduct the prognosis for boost converter. Firstly, the equivalent circuit for non-ideal boost converter should be simplified and the state space equation should be obtained. Then, constructing the objective function for crow search algorithm (CSA) and several parameters like inductance, on-resistance of Metal-Oxide Semiconductor Field-Effect Transistor (MOSFET), capacitance and equivalent series resistance of capacitor are estimated based on CSA. Considering components degradation and variable operating conditions, several simulation experiments have been conducted to validate the presented approach. Finally, the prognosis for capacitor of the boost converter has been conducted based on the least square support vector machine (LSSVM) algorithm. The results show that this technique characterizes high computation efficiency and good estimation accuracy. Also, it will be a basis of further study for the circuit-level remaining useful life prediction.
是否译文:
发表时间:2017-01-01
合写作者:Sun, Quan,Jiang, Yuanyuan,Shao, Liwei
通讯作者:王友仁
发表时间:2017-01-01

版权所有©2018- 南京航空航天大学·信息化处(信息化技术中心)

访问量: 本月访问: 今日访问量: 最后更新时间:--