吴一全

个人信息Personal Information

教授

招生学科专业:
信息与通信工程 -- 【招收博士、硕士研究生】 -- 电子信息工程学院
电子信息 -- 【招收博士、硕士研究生】 -- 电子信息工程学院

学历:南京航空航天大学

学位:工学博士学位

所在单位:电子信息工程学院

联系方式:nuaaimage@163.com

电子邮箱:

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

基于改进CV模型的金相图像分割

点击次数:

所属单位:电子信息工程学院

发表刊物:工程科学学报

关键字:金相图像分割;晶粒评级;Chan-Vese模型;水平集;倒数坎贝拉距离;指数熵;

摘要:对金相图像进行快速精确分割是金相晶粒评级的关键步骤,利用传统Chan-Vese(CV)模型很难将晶粒精确地提取出来.为了更加精确地对金相图像进行分割,提出一种基于改进CV模型的金相图像分割方法.初始化水平集函数,对曲线内外两部分分别计算其倒数坎贝拉距离,并将该距离的大小作为拟合中心的权重系数,有效抑制了噪声点对区域拟合中心准确性的影响;引入指数熵自适应调节曲线内外能量权重,减少固定能量权重对曲线演化的影响;同时加入距离规范项以避免水平集函数的重新初始化,加速该模型的收敛.实验结果表明,与传统CV模型、测地线活动轮廓模型、距离规范项的水平集模型以及偏置场修正水平集模型相比,所提方法分割出的金相图像更加精确,分割效率较高且模型收敛性较好.

ISSN号:2095-9389

是否译文:

发表时间:2017-12-15

合写作者:倪康,韩斌

通讯作者:吴一全