Affiliation of Author(s):能源与动力学院
Journal:南京航空航天大学学报
Key Words:概率密度估计;可靠性;极大似然估计;最大熵;逐次优化;
Abstract:针对经典最大熵概率密度估计中拉格朗日乘子计算目前存在高度非线性、计算精度不高或有时难以收敛等问题,提出了一种"最大似然+逐次优化"的方法。基于最大似然估计法,推导建立了简化的拉格朗日优化函数;在此基础上,基于样本原点矩约束,提出了逐次寻优算法。根据优化过程不稳定,重新推导了拉格朗日乘子的线性变换公式,避免矩阵求逆运算引起的奇异现象。针对几种常见的概率分布类型及可靠性问题,采用极大似然最大熵概率密度估计法与经典型最大熵概率密度估计法分别计算概率密度及可靠度的对比表明:极大似然最大熵概率密度估计法的优化函数非线性程度低,形式简单,而且"极大似然最大熵概率密度估计+逐次优化法计算"精度高,收敛性好。
Translation or Not:no
Date of Publication:2017-02-15
Co-author:吴福仙
Correspondence Author:wwd
Professor
Gender:Male
Alma Mater:南京航空航天大学
Education Level:With Certificate of Graduation for Doctorate Study
Degree:Doctoral Degree in Engineering
School/Department:College of Energy and Power Engineering
Discipline:Aerospace Propulsion Theory and Engineering. Power Machinery and Engineering
Open time:..
The Last Update Time:..