• 其他栏目

    吴青聪

    • 副教授 博士生导师
    • 招生学科专业:
      机械工程 -- 【招收博士、硕士研究生】 -- 机电学院
      航空宇航科学与技术 -- 【招收硕士研究生】 -- 机电学院
      机械 -- 【招收博士、硕士研究生】 -- 机电学院
    • 性别:男
    • 毕业院校:东南大学机械工程学院
    • 学历:东南大学机械学院
    • 学位:工学博士学位
    • 所在单位:机电学院
    • 办公地点:南航明故宫校区17-610
    • 电子邮箱:

    访问量:

    开通时间:..

    最后更新时间:..

    Neural network–based sliding-mode control of a tendon sheath–actuated compliant rescue manipulator

    点击次数:

    所属单位:机电学院

    发表刊物:Proc Inst Mech Eng Part I J Syst Control Eng

    摘要:The novel contribution of this article is to propose a neural network–based sliding-mode control strategy for improving the position-control performance of a tendon sheath–actuated compliant rescue manipulator. Structural design of a rescue robot with slender and compliant mechanical structure is introduced. The developed robot is capable of drilling into the narrow space under debris and accommodating complicated configuration in ruins. Dynamics modeling and parameters identification of a compliant gripper with flexible tendon sheath transmission are researched and discussed. Moreover, the neural network–based sliding-mode control scheme developed based on radial basis function network is proposed to improve the position-control accuracy of the gripper with modeling uncertainties and external disturbances. The stability of the proposed control system is demonstrated using Lyapunov stability theory. Further experimental investigation including trajectory-tracking experiments and step-response experiments are conducted to confirm the effectiveness of the proposed neural network–based sliding-mode control scheme. Experimental results show that the proposed neural network–based sliding-mode control scheme is superior to cascaded proportional–integral–derivative controller and conventional sliding-mode controller in position-control application. © IMechE 2019.

    备注:v 233,n 8,p1055-1066

    ISSN号:0959-6518

    是否译文:

    发表时间:2019-09-01