• 其他栏目

    吴青聪

    • 副教授 博士生导师
    • 招生学科专业:
      机械工程 -- 【招收博士、硕士研究生】 -- 机电学院
      航空宇航科学与技术 -- 【招收硕士研究生】 -- 机电学院
      机械 -- 【招收博士、硕士研究生】 -- 机电学院
    • 性别:男
    • 毕业院校:东南大学机械工程学院
    • 学历:东南大学机械学院
    • 学位:工学博士学位
    • 所在单位:机电学院
    • 办公地点:南航明故宫校区17-610
    • 电子邮箱:

    访问量:

    开通时间:..

    最后更新时间:..

    Neural-network-enhanced torque estimation control of a soft wearable exoskeleton for elbow assistance

    点击次数:

    所属单位:机电学院

    发表刊物:Mechatronics

    摘要:Soft wearable exoskeletons are a new approach for the applications of power assistance and rehabilitation training. In the present work, a neural-network-enhanced torque estimation controller (NNETEC) is proposed for a soft wearable elbow assistance exoskeleton with compliant tendon-sheath actuator. A comprehensive overview for the major components of the soft exoskeleton is introduced. The locations of anchor points are optimized via the maximum-stiffness principle. The NNETEC strategy is developed by fusing the feedback signals from surface electromyography (sEMG) sensors, inertial measurement units, force sensors, and motor encoder. It consists of a joint torque estimation module to identify the elbow torque of wearer based on Kalman filter, a neural-network adjustment module to recognize human motion intention, and a proportional-integral-derivative controller with hybrid position/torque feedbacks. Further experimental investigations are carried out by five volunteers to validate the effectiveness of the proposed soft elbow exoskeleton and control strategy. The results of the dumbbell-lifting experiments with various weights and frequencies demonstrate that, when compared with the proportional control strategy and the sEMG-based assistive control strategy without neural-network adjustment, the developed NNETEC method can achieve higher power assistance efficiency. © 2019 Elsevier Ltd

    备注:v 63,

    ISSN号:0957-4158

    是否译文:

    发表时间:2019-11-01