English 
王丽平

教授 博士生导师

招生学科专业:
计算机科学与技术 -- 【招收硕士研究生】 -- 计算机科学与技术学院
电子信息 -- 【招收硕士研究生】 -- 计算机科学与技术学院
应用统计 -- 【招收硕士研究生】 -- 数学学院
数学 -- 【招收博士、硕士研究生】 -- 数学学院

性别:女

毕业院校:中科院数学与系统科学研究院

学历:中科院数学与系统科学研究院

学位:理学博士学位

所在单位:数学学院

办公地点:理学楼372办公室

电子邮箱:

手机版

访问量:

最后更新时间:..

当前位置: 中文主页 >> 科学研究 >> 论文成果
Gaussian process approach for metric learning

点击次数:

所属单位:计算机科学与技术学院/人工智能学院/软件学院

发表刊物:Pattern Recogn.

摘要:Learning appropriate distance metric from data can significantly improve the performance of machine learning tasks under investigation. In terms of the distance metric representation forms in the models, distance metric learning (DML) approaches can be generally divided into two categories: parametric and non-parametric. The first category needs to make parametric assumption on the distance metric and learns the parameters, easily leading to overfitting and limiting model flexibility. The second category abandons the above assumption and instead, directly learns a non-parametric distance metric whose complexity can be adjusted according to the number of available training data, and makes the model representation relatively flexible. In this paper we follow the idea of the latter category and develop a non-parametric DML approach. The main challenge of our work concerns the formulation and learning of non-parametric distance metric. To meet this, we use Gaussian Process (GP) to extend the bilinear similarity into a non-parametric metric (here we abuse the concept of metric) and then learn this metric for specific task. As a result, our approach learns not only nonlinear metric that inherits the flexibility of GP but also representative features for the follow-up tasks. Compared with the existing GP-based feature learning approaches, our approach can provide accurate similarity prediction in the new feature space. To the best of our knowledge, this is the first work that directly uses GP as non-parametric metric. In the experiments, we compare our approach with related GP-based feature learning approaches and DML approaches respectively. The results demonstrate the superior performance of our approach. © 2018 Elsevier Ltd

ISSN号:0031-3203

是否译文:

发表时间:2019-03-01

合写作者:陈松灿

通讯作者:王丽平

版权所有©2018- 南京航空航天大学·信息化处(信息化技术中心)