扫描手机二维码

欢迎您的访问
您是第 位访客

开通时间:..

最后更新时间:..

  • 汪俊 ( 教授 )

    的个人主页 http://faculty.nuaa.edu.cn/wj8/zh_CN/index.htm

  •   教授   博士生导师
  • 招生学科专业:
    机械工程 -- 【招收硕士研究生】 -- 机电学院
    航空宇航科学与技术 -- 【招收博士、硕士研究生】 -- 机电学院
    机械 -- 【招收博士、硕士研究生】 -- 机电学院
    计算机科学与技术 -- 【招收博士、硕士研究生】 -- 计算机科学与技术学院
论文成果 当前位置: 中文主页 >> 科学研究 >> 论文成果
Surface reconstruction with data-driven exemplar priors

点击次数:
所属单位:机电学院
发表刊物:COMPUTER-AIDED DESIGN
关键字:3D local shape priors Data-driven exemplar priors Affinity propagation Surface reconstruction
摘要:In this paper, we propose a framework to reconstruct 3D models from raw scanned points by learning the prior knowledge of a specific class of objects. Unlike previous work that heuristically specifies particular regularities and defines parametric models, our shape priors are learned directly from existing 3D models under a framework based on affinity propagation. Given a database of 3D models within the same class of objects, we build a comprehensive library of 3D local shape priors. We then formulate the problem to select as-few-as-possible priors from the library, referred to as exemplar priors. These priors are sufficient to represent the 3D shapes of the whole class of objects from where they are generated. By manipulating these priors, we are able to reconstruct geometrically faithful models with the same class of objects from raw point clouds. Our framework can be easily generalized to reconstruct various categories of 3D objects that have more geometrically or topologically complex structures. Comprehensive experiments exhibit the power of our exemplar priors for gracefully solving several problems in 3D shape reconstruction such as preserving sharp features, recovering fine details and so on. (C) 2017 Elsevier Ltd. All rights reserved.
ISSN号:0010-4485
是否译文:否
发表时间:2017-07-01
合写作者:Remil, Oussama,谢乾,谢星宇,Xu, Kai
通讯作者:汪俊

 

版权所有©2018- 南京航空航天大学·信息化处(信息化技术中心)