访问量:   最后更新时间:--

谭晓阳

博士生导师
硕士生导师
教师姓名:谭晓阳
教师拼音名称:Tan Xiaoyang
电子邮箱:
所在单位:计算机科学与技术学院/人工智能学院/软件学院
学历:南京大学
办公地点:江宁校区 东区 计算机楼 218 办公室 http://parnec.nuaa.edu.cn/xtan
性别:男
学位:工学博士学位
职称:教授
毕业院校:南京大学
所属院系:计算机科学与技术学院/软件学院
招生学科专业: 计算机科学与技术 -- 【招收博士、硕士研究生】 -- 计算机科学与技术学院
软件工程 -- 【招收硕士研究生】 -- 计算机科学与技术学院
网络空间安全 -- 【招收博士、硕士研究生】 -- 计算机科学与技术学院
电子信息 -- 【招收博士、硕士研究生】 -- 计算机科学与技术学院
其他联系方式

暂无内容

论文成果
Bayesian denoising hashing for robust image retrieval
发布时间:2020-03-23    点击次数:

所属单位:计算机科学与技术学院/人工智能学院/软件学院

发表刊物:Pattern Recogn.

摘要:Learning to hash is one of the most popular techniques in image retrieval, but few work investigates its robustness to noise corrupted images in which the unknown pattern of noise would heavily deteriorate the performance. To deal with this issue, we present in this paper a Bayesian denoising hashing algorithm whose output can be regarded a denoised version of the input hash code. We show that our method essentially seeks to reconstruct a new but more robust hash code by preserving the original input information while imposing extra constraints so as to correct the corrupted bits. We optimized this model in variational Bayes framework which has a closed-form update in each iteration that is more efficient than numerical optimization. Furthermore, our method can be added at the top of any original hashing layer, serving as a post-processing denoising layer with no change to previous training procedure. Experiments on three popular datasets demonstrate that the proposed method yields robust and meaningful hash code, which significantly improves the performance of state-of-the-art hash learning methods on challenging tasks such as large-scale natural image retrieval and retrieval with corrupted images. © 2018 Elsevier Ltd

ISSN号:0031-3203

是否译文:

发表时间:2019-02-01

合写作者:王冬,Song, Ge

第一作者:谭晓阳

通讯作者:谭晓阳