扫描手机二维码

欢迎您的访问
您是第 位访客

开通时间:..

最后更新时间:..

  • 卿海 ( 教授 )

    的个人主页 http://faculty.nuaa.edu.cn/qh/zh_CN/index.htm

  •   教授   博士生导师
  • 招生学科专业:
    力学 -- 【招收博士、硕士研究生】 -- 航空学院
    机械 -- 【招收硕士研究生】 -- 航空学院
个人简介:

 主要从事结构尺度效应,复合材料及结构力学,固体力学,计算固体力学方面的研究工作,主持国家自然科学基金、江苏省自然科学基金、江苏省科技厅及教育部等科研项目10多项。

联系方式:

电子邮箱:qinghai@nuaa.edu.cn

教育经历:

(1) 2002.92007.7, 清华大学, 固体力学, 博士,导师: 杨卫院士

(2) 2005.42006.4, 法国特鲁瓦工业大学, 机械工程系, 访问博士生, 导师: 吕坚院士

(3) 1998.92002.7, 西安交通大学, 工程力学专业, 学士

科研与学术工作经历:

(1) 2014.7至现在, 南京航空航天大学, 结构工程与力学系, 教授

(2) 2011.32014.6, 丹麦西门子风能公司, 复合材料与结构研发中心, 高级工程师

(3) 2007.92011.2, 丹麦科技大学, 博士后, 导师: Leon Mishnaevsky教授

发表论文(一作或通讯作者):

[54]Ren YM, Qing H*.Buckling and Free Vibration of Functionally Graded Piezoelectric Nanobeams Using Nonlocal Integral Models. International Journal of Structural Stability and Dynamics, accepted.

[53]Zhang P, Qing H*. Two-phase local/nonlocal mixture models for buckling analysis of higher-order refined shear deformation beams under thermal effect. Mechanics of Advanced Materials and Structures, accepted.

[52]Ren YM, Qing H*.On the consistency of two-phase local/nonlocal piezoelectric integral model. Applied Mathematics and Mechanics-English Edition, 2021;42(11): 1581–1598.

[51]Zhang P, Qing H*. Well-posed two-phase nonlocal integral models for free vibration of nanobeams in context with higher-order refined shear deformation theory.Journal of Vibration and Control, DOI: 10.1177/10775463211039902.

[50]Bian PL, Qing H*, Schmauder S.A novel phase-field based cohesive zone model for modeling interfacial failure in composites.International Journal for Numerical Methods in Engineering, 2021;122(23):7054-7077.

[49]Bian PL, Qing H*. Elastic buckling and free vibration of nonlocal strain gradient Euler-Bernoulli beams using Laplace transform. Zamm-Zeitschrift Fur Angewandte Mathematik Und Mechanik, DOI: 10.1002/zamm.202100152.

[48]Zhang P, Qing H*. Thermoelastic analysis of nanobar based on nonlocal integral elasticity and nonlocal integral heat conduction. Journal of Thermal Stresses, 2021;44(10):1244-1261.

[47]Zhang P, Qing H*. Two-phase nonlocal integral models with a bi-Helmholtz averaging kernel for nanorods. Applied Mathematics and Mechanics-English Edition, 2021; 42(10):1379–1396.

[46]Zhang P, Qing H*. A bi-Helmholtz type of two-phase nonlocal integral model for buckling of Bernoulli-Euler beams under non-uniform temperature. Journal of Thermal Stresses, 2021;44(9):1053-1067.

[45]Bian PL, Qing H*. The effect of carbon nanofibers on transverse cracking in carbon fiber reinforced polymer: A 3D finite element modeling and simulation.Mechanics of Advanced Materials and Structures, DOI:10.1080/15376494.2021.1952662.

[44]Zhang P, Qing H*. Free vibration analysis of Euler–Bernoulli curved beams using two-phase nonlocal integral models.Journal of Vibration and Control, DOI:10.1177/10775463211022483.

[43]Ren YM, Qing H*. Bending and Buckling Analysis of Functionally Graded Euler–Bernoulli Beam Using Stress-Driven Nonlocal Integral Model with Bi-Helmholtz Kernel.International Journal of Applied Mechanics,2021;13(4): 2150041.

[42] Zhang P, Qing H*. On well-posedness of two-phase nonlocal integral models for higher-order refined shear deformation beams. Applied Mathematics and Mechanics-English Edition. 2021;42:931–950.

[41] Zhang P, Qing H*. Closed-form solution in bi-Helmholtz kernel based two-phase nonlocal integral models for functionally graded Timoshenko beams. Composite Structures. 2021;265, 113770.

[40] Tang Y, Qing H*. Elastic buckling and free vibration analysis of functionally graded Timoshenko beam with nonlocal strain gradient integral model. Applied Mathematical Modelling. 2021;96:657-77.

[39] Zhang P, Qing H*. The consistency of the nonlocal strain gradient integral model in size-dependent bending analysis of beam structures. International Journal of Mechanical Sciences. 2021;189,105991.

[38] Bian PL, Qing H*, Gao CF. One-dimensional stress-driven nonlocal integral model with bi-Helmholtz kernel: Close form solution and consistent size effect. Applied Mathematical Modelling. 2021;89:400-12.

[37] Bian PL, Qing H*. Torsional static and vibration analysis of functionally graded nanotube with bi-Helmholtz kernel based stress-driven nonlocal integral model. Applied Mathematics and Mechanics-English Edition. 2021;42:425-40.

[36] Zhang P, Qing H*. Buckling analysis of curved sandwich microbeams made of functionally graded materials via the stress-driven nonlocal integral model. Mechanics of Advanced Materials and Structures.  DOI: 10.1080/15376494.2020.1811926

[35] Bian PL, Qing H*. Computational modeling of carbon nanofibers reinforced composites: A comparative study. Journal of Composite Materials, 2021;55(17):2315–2327.

[34] Li C, Qing H*, Gao CF. Theoretical analysis for static bending of Euler-Bernoulli using different nonlocal gradient models. Mechanics of Advanced Materials and Structures, 2021; 28(19): 1965-1977.

[33] Bian PL, Qing H*. On bending consistency of Timoshenko beam using differential and integral nonlocal strain gradient models. Zamm-Zeitschrift Fur Angewandte Mathematik Und Mechanik. 2021; 101(8):e202000132.

[32] Zhang P, Qing H*, Gao CF. Analytical solutions of static bending of curved Timoshenko microbeams using Eringen's two-phase local/nonlocal integral model. Zamm-Zeitschrift Fur Angewandte Mathematik Und Mechanik. 2020;100: e201900207.

[31] Zhang P, Qing H*, Gao CF. Exact solutions for bending of Timoshenko curved nanobeams made of functionally graded materials based on stress -driven nonlocal integral model. Composite Structures. 2020;245.

[30] Zhang P, Qing H*. Exact solutions for size-dependent bending of Timoshenko curved beams based on a modified nonlocal strain gradient model. Acta Mechanica. 2020;231:5251-76.

[29] Zhang JQ, Qing H*, Gao CF. Exact and asymptotic bending analysis of microbeams under different boundary conditions using stress-derived nonlocal integral model. Zamm-Zeitschrift Fur Angewandte Mathematik Und Mechanik. 2020;100., e201900148

[28] Jiang P, Qing H*, Gao CF. Theoretical analysis on elastic buckling of nanobeams based on stress-driven nonlocal integral model. Applied Mathematics and Mechanics-English Edition. 2020;41:207-32.

[27] He YM, Qing H*, Gao CF. Theoretical Analysis of Free Vibration of Microbeams under Different Boundary Conditions Using Stress-Driven Nonlocal Integral Model. International Journal of Structural Stability and Dynamics. 2020;20.

[26] Bian PL, Verestek W, Yan S, Xu X, Qing H*, Schmauder S. A multiscale modeling on fracture and strength of graphene platelets reinforced epoxy. Engineering Fracture Mechanics. 2020;235,  107197.

[25] Bian PL, Schmauder S, Qing H*. Strength and damage of nanoplatelets reinforced polymer: A 3D finite element modeling and simulation. Composite Structures. 2020;245, 112362.

[24] Zhang P, Qing H*, Gao CF. Theoretical analysis for static bending of circular Euler-Bernoulli beam using local and Eringen's nonlocal integral mixed model. Zamm-Zeitschrift Fur Angewandte Mathematik Und Mechanik. 2019;99,e201800329.

[23] Bian PL, Qing H*, Gao CF. Micromechanical analysis of the stress transfer in single-fiber composite: The influence of the uniform and graded interphase with finite-thickness. Applied Mathematical Modelling. 2018;59:640-61.

[22] Bian PL, Liu TL, Qing H*, Gao CF. 2D Micromechanical Modeling and Simulation of Ta-Particles Reinforced Bulk Metallic Glass Matrix Composite. Applied Sciences-Basel. 2018;8.

[21] Pei PY, Chang WX, Qing H*, Gao CF. A new theoretical model of the quasistatic single-fiber pullout problem: The energy-based criterion with unloading process. Composites Science and Technology. 2016;137:69-77.

[20] Chang WX, Qing H*, Gao CF. A new theoretical model of the quasistatic single-fiber pull-out problem: A rate-dependent interfacial bond strength. Mechanics of Materials. 2016;94:132-41.

[19] Qing H*, Liu TL. Micromechanical Analysis of SiC/Al Metal Matrix Composites: Finite Element Modeling and Damage Simulation. International Journal of Applied Mechanics. 2015;7.

[18] Qing H*. The Influence of Particle Shapes on Strength and Damage Properties of Metal Matrix Composites. Journal of Nanoscience and Nanotechnology. 2015;15:5741-8.

[17] Qing H*. Micromechanical study of influence of interface strength on mechanical properties of metal matrix composites under uniaxial and biaxial tensile loadings. Computational Materials Science. 2014;89:102-13.

[16] Qing H*. Finite Element Analysis of the Microstructure-Strength Relationships of Metal Matrix Composites. Acta Metallurgica Sinica-English Letters. 2014;27:844-52.

[15] Qing H*. Automatic generation of 2D micromechanical finite element model of silicon-carbide/aluminum metal matrix composites: Effects of the boundary conditions. Materials & Design. 2013;44:446-53.

[14] Qing H*. A new theoretical model of the quasistatic single-fiber pullout problem: Analysis of stress field. Mechanics of Materials. 2013;60:66-79.

[13] Qing H*. 2D micromechanical analysis of SiC/Al metal matrix composites under tensile, shear and combined tensile/shear loads. Materials & Design. 2013;51:438-47.

[12] Qing H*, Mishnaevsky L. Fatigue modeling of materials with complex microstructures. Computational Materials Science. 2011;50:1644-50.

[11] Qing H*, Mishnaevsky L. A 3D multilevel model of damage and strength of wood: Analysis of microstructural effects. Mechanics of Materials. 2011;43:487-95.

[10] Qing H*, Mishnaevsky L. 3D multiscale micromechanical model of wood: From annual rings to microfibrils. International Journal of Solids and Structures. 2010;47:1253-67.

[9] Qing H*, Mishnaevsky L. 3D constitutive model of anisotropic damage for unidirectional ply based on physical failure mechanisms. Computational Materials Science. 2010;50:479-86.

[8] Qing H, Yang W, Lu JA. Numerical Simulation of Multiple Cracking in ANSI 304 Stainless Steel Under Thermal Fatigue. International Journal of Damage Mechanics. 2010;19:767-85.

[7] Qing H, Mishnaevsky L. Moisture-related mechanical properties of softwood: 3D micromechanical modeling. Computational Materials Science. 2009;46:310-20.

[6] Qing H, Mishnaevsky L. 3D hierarchical computational model of wood as a cellular material with fibril reinforced, heterogeneous multiple layers. Mechanics of Materials. 2009;41:1034-49.

[5] Qing H*, Mishnaevsky L. Unidirectional high fiber content composites: Automatic 3D FE model generation and damage simulation. Computational Materials Science. 2009;47:548-55.

[4] Mishnaevsky L, Qing H*. Micromechanical modelling of mechanical behaviour and strength of wood: State-of-the-art review. Computational Materials Science. 2008;44:363-70.

[3] Qing H, Yang W, Lu J, Li DF. Thermal-stress analysis for a strip of finite width containing a stack of edge cracks. Journal of Engineering Mathematics. 2008;61:161-9.

[2] Qing H, Yang W. Characterization of strongly interacted multiple cracks in an infinite plate. Theoretical and Applied Fracture Mechanics. 2006;46:209-16.

[1] Qing H, Yang W. Thermal shock analyses for a strip containing an infinite row of periodically distributed cracks normal to its edge. Theoretical and Applied Fracture Mechanics. 2005;44:249-60.