扫描手机二维码

欢迎您的访问
您是第 位访客

开通时间:..

最后更新时间:..

  • 刘文波 ( 教授 )

    的个人主页 http://faculty.nuaa.edu.cn/lwb1/zh_CN/index.htm

  •   教授
  • 招生学科专业:
    仪器科学与技术 -- 【招收博士、硕士研究生】 -- 自动化学院
    电子信息 -- 【招收博士、硕士研究生】 -- 自动化学院
论文成果 当前位置: 中文主页 >> 科学研究 >> 论文成果
基于深度信念网络的非限制性人脸识别算法研究

点击次数:
所属单位:自动化学院
发表刊物:计量学报
关键字:计量学;人脸识别;深度信念网络;深度学习;小样本;
摘要:针对非限制性条件下的人脸识别存在自由度高、干扰因素复杂等技术难点,引入深度学习理论,提出了一种基于深度信念网络(DBNs)的非限制性人脸识别算法模型。基于相对熵稀疏性限制和dropout机制等方法,设计了优化算法。针对实际使用场合中样本量不足的问题,提出了一种混合DBNs模型,该模型采用CNNs深度卷积网络生成训练DBNs所需的模拟样本。标准人脸库下的实验结果表明,DBNs模型的平均识别率为97.0%,混合DBNs模型的平均识别率为90.3%,满足实际使用需求。
是否译文:否
发表时间:2017-01-22
合写作者:赵一中
通讯作者:刘文波

 

版权所有©2018- 南京航空航天大学·信息化处(信息化技术中心)